Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Wild mice have natural protection against Lyme borreliosis

04.04.2013
Like humans, mice can become infected with Borrelia. However, not all mice that come into contact with these bacteria contract the dreaded Lyme disease: Animals with a particular gene variant are immune to the bacteria, as scientists from the universities of Zurich and Lund demonstrate. Wild mice are the primary hosts for Borrelia, which are transmitted by ticks.

Springtime spells tick-time. Lyme borreliosis is the most common tick-borne disease in Switzerland: around 10,000 people a year become infected with the pathogen. The actual hosts for Borrelia, however, are wild mice. Like in humans, the pathogen is also transmitted by ticks in mice.

Interestingly, not all mice are equally susceptible to the bacterium and individual animals are immune to the pathogen. Scientists from the universities of Zurich and Lund headed by evolutionary biologist Barbara Tschirren reveal that the difference in vulnerability among the animals is genetic in origin.

Protective gene variant
Tschirren and colleagues examined wild mice for signs of a Borrelia infection in a large-scale field study. Borrelia afzelii – the scientific name for the bacteria – feed on mouse blood. The researchers discovered that mice with a particular variant of the antigen receptor TLR2 were around three times less susceptible to Borrelia. “The immune system of mice with this receptor variant recognizes the pathogen better and can trigger an immune response more quickly to destroy the Borrelia in time,” says Tschirren. Infected mice exhibit similar symptoms to humans – especially joint complaints. Consequently, in the wild infected mice probably do not survive for very long and weakened animals soon fall victim to foxes and birds of prey.
Arms race between mice and Borrelia
The protective gene variant is advantageous for its carriers and, according to the researchers, gradually becoming prevalent in the mouse population. Nonetheless, it is unlikely that all mice will one day be resistant to Borrelia. “The increasing resistance in the host is bound to lead to adaptations in Borrelia,” predicts Tschirren. “We can observe the evolutionary adaptation through the rearmament in mice and the pathogen.”

People also have the antigen receptor TLR2, but not the resistant gene variant observed in mice. Whether the evolutionary arms race between mice and Borrelia will have repercussions for people remains to be seen. According to Tschirren, the bacterium does not necessarily have to become more aggressive for humans.

Literatur:
Barbara Tschirren, Martin Andersson, Kristin Scherman, Helena Westerdahl, Peer R. E. Mittl, and Lars Råberg. Polymorphisms at the innate immune receptor TLR2 are associated with Borrelia infection in a wild rodent population. Proceedings of the Royal Society B, 20130364. April 3, 2013. doi: 10.1098/rspb.2013.0364
Contact:
Prof. Barbara Tschirren
Institute of Evolutionary Biology and Environmental Studies
University of Zurich
Phone +41 44 635 47 77
E-mail barbara.tschirren@ieu.uzh.ch

Nathalie Huber | Universität Zürich
Further information:
http://www.uzh.ch

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>