Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Why human egg cells don't age well

01.07.2015

When egg cells form with an incorrect number of chromosomes--a problem that increases with age--the result is usually a miscarriage or a genetic disease such as Down syndrome.

Now, researchers at the RIKEN Center for Developmental Biology in Japan have used a novel imaging technique to pinpoint a significant event that leads to these types of age-related chromosomal errors.


Chromosomes are seen as red, and kinetochores are green. (A-B) Bivalent appears normal (green arrows). (C) Bivalent begins to hyperstretch (orange arrows). (D-E) Single pairs begin to move independently (red and purple arrows). (E) Balanced predivision of sister chromatids (red and purple arrows).

Credit: RIKEN

Published in Nature Communications, the study shows that as egg cells mature in older women, paired copies of matching chromosomes often separate from each other at the wrong time, leading to early division of chromosomes and their incorrect segregation into mature egg cells.

Most cells have two copies of each chromosome--one from each parent. Immature egg cells begin this way, but are transformed through a process called meiosis into mature egg cells that only have one copy of each chromosome. At the beginning of meiosis each chromosome copies itself and joins with its matching pair to form a group of four chromosomes that swap genetic material.

These groups of four chromosomes--called bivalents--then split apart into single pairs, and the cell divides. One part continues as the egg cell and the other part degrades. In the second stage of meiosis, the single pairs of chromosomes--two sister chromatids joined in the middle--separate and the egg cell divides again in the same way, leaving a single mature egg cell with one copy of each chromosome.

"What we found," explains team leader Tomoya Kitajima, "is that in older cells, the bivalents sometimes separate early, and this leads to division of sister chromatids in the first stage of meiosis, rather than in the second stage."

To determine the most common type of age-related segregation errors, the researchers first used a novel high resolution imaging technique to visualize chromosomes in live mouse egg cells throughout the whole first stage of meiosis. They found that chromosomes were always distributed correctly in young egg cells, but that a little less than 10% of older cells suffered from segregation errors.

Closer examination of the chromosome-tracking data showed that the dominant type of error was predivision of sister chromatids, and not movement of intact chromosome pairs to only one of the new cells.

The tracking data also allowed researchers to go back in time and look at what was happening to chromosomes that eventually segregated incorrectly. They found that a large majority of them had been part of bivalents whose connection between paired chromosome copies had become hyperstretched and then snapped earlier in meiosis, leaving single pairs.

The researchers then confirmed that the number of singly paired chromosomes--also called univalents--was higher in older mouse and even human egg cells, indicating that age-related segregation errors could be tracked back to increased numbers of prematurely separated chromosome pairs.

"We were surprised and pleased that the vast majority of errors are preceded by a single common event--bivalent separation," says Kitajima. "Now we can focus our efforts on developing an artificial tie to suppress premature separation and on understanding the molecular mechanism underlying the age-related reduction in bivalent cohesion that appears to precede it."

Reference:

Sakakibara Y, Hashimoto S, Nakaoka Y, Kouznetsova A, Hoog C, and Kitajima TS (2015). Bivalent separation into univalents precedes age-related meiosis I errors in oocytes. Nature Communications. doi: 10.1038/ncomms8550.

Adam Phillips | EurekAlert!

More articles from Life Sciences:

nachricht Closing in on advanced prostate cancer
13.12.2017 | Institute for Research in Biomedicine (IRB Barcelona)

nachricht Visualizing single molecules in whole cells with a new spin
13.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

Im Focus: Successful Mechanical Testing of Nanowires

With innovative experiments, researchers at the Helmholtz-Zentrums Geesthacht and the Technical University Hamburg unravel why tiny metallic structures are extremely strong

Light-weight and simultaneously strong – porous metallic nanomaterials promise interesting applications as, for instance, for future aeroplanes with enhanced...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

A whole-body approach to understanding chemosensory cells

13.12.2017 | Health and Medicine

Water without windows: Capturing water vapor inside an electron microscope

13.12.2017 | Physics and Astronomy

Cellular Self-Digestion Process Triggers Autoimmune Disease

13.12.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>