Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

WA discovery a key to blood cell development

29.04.2009
A West Australian research team has made the world-first discovery a 'pied piper' molecule within blood cells, called Liar, that leads other molecules into the nucleus of the cell, and could offer a key in treating prostate, breast and colon cancers as well as leukemia.

Uncovered by two research groups at the Western Australian Institute for Medical Research (WAIMR) led by Associate Professor Evan Ingley and Director Professor Peter Klinken, they have also identified the function of a known cellular enzyme, Lyn, as a switch that 'turns on' blood cell development.

The findings are published in the April 16 issue of Blood, the journal of the American Society of Hematology, the world's premier hematology journal.

Associate Professor Ingley said the findings were a leap forward in the understanding of how blood cells develop and divide, which could offer them a key to turning off cancerous cell growth.

"LIAR is like a key, which opens a pathway into the nucleus of a blood cell for a number of other molecules, allowing them to flow in – and these molecules are what signal the cell to develop and divide," he said.

"From here, if we could control Liar, the hope is that we could use it to switch off the growth of abnormal, or cancerous, cells.

"Because Liar is present in every blood cell, this knowledge could help treat a huge range of conditions and diseases, but where it has most potential is in cancers of the prostate, breast, colon and blood where activity of the enzyme Lyn is heightened."

The focus of the team's investigations, Lyn has now been identified as an enzyme which modifies proteins that triggers the cell to develop further.

Associate Professor Ingley said in their investigations into blood cell development, Lyn became their main focus.

"We could see Lyn had a big influence on blood cell development, so to understand how it works, we looked at what it interacts with and the effects it has," he said.

"What we then saw was Lyn interacting with Liar, and noticed it also interacted with other molecules that signal the cell to behave a certain way.

"Now we have identified Liar and Lyn and we know what they do, we'll be looking at them more closely to find out how they may have the potential to help treat cancers."

The research has been funded by the National Health and Medical Research Council, The Cancer Council WA and the Royal Perth Hospital Medical Research Foundation.

Sarah Hayward | EurekAlert!
Further information:
http://researchaustralia.org

More articles from Life Sciences:

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

nachricht Fungi that evolved to eat wood offer new biomass conversion tool
25.07.2017 | University of Massachusetts at Amherst

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>