Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Viruses Help MU Scientists Battle Pathogenic Bacteria and Improve Water Supply

25.09.2012
Newly developed technique can kill antibiotic-resistant germs

Infectious bacteria received a taste of their own medicine from University of Missouri researchers who used viruses to infect and kill colonies of Pseudomonas aeruginosa, common disease-causing bacteria.

The viruses, known as bacteriophages, could be used to efficiently sanitize water treatment facilities and may aid in the fight against deadly antibiotic-resistant bacteria.

“Our experiment was the first to use bacteriophages in conjunction with chlorine to destroy biofilms, which are layers of bacteria growing on a solid surface,” said Zhiqiang Hu, associate professor of civil and environmental engineering in MU’s College of Engineering. “The advantage to using viruses is that they can selectively kill harmful bacteria. Beneficial bacteria, such as those used to break down wastes in water treatment plants, are largely unaffected. Hence, viruses could be used to get rid of pathogenic bacteria in water filters that would otherwise have to be replaced. They could save taxpayers’ money by reducing the cost of cleaning water.”

Bacteria can be difficult to kill when they form a biofilm. The outer crust of bacteria in these biofilms can be killed by chlorine, but the inner bacteria are sheltered. Viruses solve this problem because they spread through an entire colony of bacteria. Hu noted that the bacteriophages are easier to create than the enzymes used to attack biofilms. The viruses also are better at targeting specific bacterial species.

Hu, along with MU’s recent graduate, Yanyan Zhang, found the greatest success in killing biofilms by using a combination of bacteriophages and chlorine. An initial treatment with viruses followed by chlorine knocked out 97 percent of biofilms within five days of exposure. When used alone, viruses removed 89 percent of biofilms, while chlorine removed only 40 percent.

“The methods we used to kill Pseudomonas aeruginosa could be used against other dangerous bacteria, even those that have developed resistance to antibiotics,” said Hu. “Our work opened the door to a new strategy for combating the dangers and costs of bacterial biofilms. The next step is to expand our experiment into a pilot study.”

The study “Combined Treatment of Pseudomonas aeruginosa Biofilms with Bacteriophages and Chlorine” has been published in the journal Biotechnology and Bioengineering.

Tim Wall | EurekAlert!
Further information:
http://www.missouri.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>