Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of the Basque Country researchers decode transcriptome for grey mullet

29.01.2010
The Cell Biology in Environmental Toxicology research team at the Department of Zoology and Animal Cell Biology at the University of the Basque Country (UPV/EHU) has decoded the transcriptome for the grey mullet. The director of the research project was Mr Ibon Cancio.

On more than one occasion we will have heard that the genome is the library where all the information of each organism is stored. This information is organised in various genes, where the information to synthesise the proteins that carry out most cell functions is stored.

The genome also has another type of genetic material that is not in the genes. This is the transcriptome - the part of the genome that is transcribed or is read. In most pluricellular beings it is usually more or less 1.5% of the genome.

This UPV/EHU research team has just decoded the transcriptome of the grey mullet. For a number of years now the researchers have been measuring the quality of river and sea water. For this it was necessary to have an animal capable of living in contaminated areas, one of which is the grey mullet. The aim was to measure the response that this animal has to contamination, in order to better know the quality of surrounding water. Besides, the grey mullet is very abundant in the rivers and sea of the Basque Country. Thus, according to Mr Cancio, it is the appropriate animal model, being very abundant and capable of surviving in contaminated areas.

More than half of the genes

The research was initiated in the Basque fishing port of Ondarroa, gathering a number of grey mullets: males, females, young fish, etc. Organs such as the liver, gills, gonads and brain were extirpated from each and the messenger RNA extracted. These samples of messenger RNA were suitably mixed to ensure that most of the transcriptome of the species would be found in the overall sample. Subsequently, the messenger RNA was converted to complementary DNA.

The samples of complementary DNA were sent to the sequencing department at the University of Newcastle in Britain. This university has a new sequencing system whereby, with just one analysis lasting seven and a half hours, 400,000 cDNA, can be sequenced, each with a length of 250 nucleotides. This was how the UPV/EHU research team obtained all the information about the transcriptome of the grey mullet; 126 million nucleotides, in concrete.

The most laborious task came later - making sense of all the information obtained, i.e. identifying the genes for each sequence, given that the function of the sequence can be found out from the gene. To this end, help from the General Research Services (SGIker) of the UPV/EHU was required.

Following this procedure, 18,332 genes were obtained. The aim was not to identify all the genes of the grey mullet, but more than half of them. With all this information a DNA microchip was developed in order to investigate the response of the mentioned genes to contamination.

For the upcoming year the challenge for the UPV/EHU research team to decode the transcriptome of the slug in order to generate a health profile of the soil.

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: Basque DNA RNA UPV/EHU cell death messenger RNA synthetic biology

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>