Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

University of the Basque Country researchers decode transcriptome for grey mullet

29.01.2010
The Cell Biology in Environmental Toxicology research team at the Department of Zoology and Animal Cell Biology at the University of the Basque Country (UPV/EHU) has decoded the transcriptome for the grey mullet. The director of the research project was Mr Ibon Cancio.

On more than one occasion we will have heard that the genome is the library where all the information of each organism is stored. This information is organised in various genes, where the information to synthesise the proteins that carry out most cell functions is stored.

The genome also has another type of genetic material that is not in the genes. This is the transcriptome - the part of the genome that is transcribed or is read. In most pluricellular beings it is usually more or less 1.5% of the genome.

This UPV/EHU research team has just decoded the transcriptome of the grey mullet. For a number of years now the researchers have been measuring the quality of river and sea water. For this it was necessary to have an animal capable of living in contaminated areas, one of which is the grey mullet. The aim was to measure the response that this animal has to contamination, in order to better know the quality of surrounding water. Besides, the grey mullet is very abundant in the rivers and sea of the Basque Country. Thus, according to Mr Cancio, it is the appropriate animal model, being very abundant and capable of surviving in contaminated areas.

More than half of the genes

The research was initiated in the Basque fishing port of Ondarroa, gathering a number of grey mullets: males, females, young fish, etc. Organs such as the liver, gills, gonads and brain were extirpated from each and the messenger RNA extracted. These samples of messenger RNA were suitably mixed to ensure that most of the transcriptome of the species would be found in the overall sample. Subsequently, the messenger RNA was converted to complementary DNA.

The samples of complementary DNA were sent to the sequencing department at the University of Newcastle in Britain. This university has a new sequencing system whereby, with just one analysis lasting seven and a half hours, 400,000 cDNA, can be sequenced, each with a length of 250 nucleotides. This was how the UPV/EHU research team obtained all the information about the transcriptome of the grey mullet; 126 million nucleotides, in concrete.

The most laborious task came later - making sense of all the information obtained, i.e. identifying the genes for each sequence, given that the function of the sequence can be found out from the gene. To this end, help from the General Research Services (SGIker) of the UPV/EHU was required.

Following this procedure, 18,332 genes were obtained. The aim was not to identify all the genes of the grey mullet, but more than half of them. With all this information a DNA microchip was developed in order to investigate the response of the mentioned genes to contamination.

For the upcoming year the challenge for the UPV/EHU research team to decode the transcriptome of the slug in order to generate a health profile of the soil.

Amaia Portugal | EurekAlert!
Further information:
http://www.elhuyar.com

Further reports about: Basque DNA RNA UPV/EHU cell death messenger RNA synthetic biology

More articles from Life Sciences:

nachricht Unique genome architectures after fertilisation in single-cell embryos
30.03.2017 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Unique genome architectures after fertilisation in single-cell embryos

30.03.2017 | Life Sciences

Pinball at the atomic level

30.03.2017 | Physics and Astronomy

Organic-inorganic heterostructures with programmable electronic properties

30.03.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>