Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Unfolding the genesis of ‘bad’ seeds

Specific characteristics of small clumps of prion proteins dictate the conformation of larger aggregates that could influence disease symptoms

When the prion protein misfolds and aggregates in humans, it can cause fatal neurodegenerative diseases such as Creutzfeldt-Jakob disease and Gerstmann–Sträussler–Scheinker syndrome.

These diseases have different symptoms, partly because the prion protein can misfold into different shapes. Just how a single protein can misfold into different aggregate conformations, however, has confounded scientists.

Now, Motomasa Tanaka and colleagues at the RIKEN Brain Science Institute in Wako have reported that small clusters of prion proteins called oligomers, which develop from monomer proteins, determine the eventual shape of the larger prion aggregate1. The findings were published in the journal Nature Chemical Biology in collaboration with researchers from the United States and from the RIKEN SPring-8 Center in Harima.

The research team used a yeast model system to study prion misfolding and aggregation, because yeast contain a prion-like protein called Sup35. This yeast protein misfolds into different aggregate conformations that cause the yeast to turn various colors—from white to pink—when they are grown on nutrient plates. A synthetic version of Sup35 can also form these distinct conformations when grown at different temperatures.

Using various biophysical techniques, the researchers observed that the synthetic Sup35 formed oligomers when they were grown at a low temperature, but not at a high temperature. The Sup35 grown at a low temperature made the yeast turn white, while Sup35 grown at a high temperature made the yeast turn pink. This suggests that the oligomers, formed at only the low temperature, may be an intermediate step in the formation of the larger aggregates that cause the ‘white’ phenotype.

The team then investigated which amino acid region of Sup35 is involved in the formation of the oligomer. By mutating various amino acids of the Sup35 protein, the researchers found that the parts of the protein required for oligomer formation were different to those required for creation of the larger aggregate. In addition, while oligomer formation was involved in acquisition of the ‘white’ phenotype, it was not required for driving the growth of the larger prion aggregate. These findings suggest that oligomers serve as an initial scaffold to determine the eventual shape—and therefore the physiological characteristics—of the larger prion aggregate. Tanaka proposes that “inhibiting these interactions between prion proteins could become a therapeutic strategy for the neurodegenerative prion diseases.”

The corresponding author for this highlight is based at the Tanaka Research Unit, RIKEN Brain Science Institute

Saeko Okada | Research asia research news
Further information:

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>