Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unfolding the genesis of ‘bad’ seeds

06.04.2010
Specific characteristics of small clumps of prion proteins dictate the conformation of larger aggregates that could influence disease symptoms

When the prion protein misfolds and aggregates in humans, it can cause fatal neurodegenerative diseases such as Creutzfeldt-Jakob disease and Gerstmann–Sträussler–Scheinker syndrome.

These diseases have different symptoms, partly because the prion protein can misfold into different shapes. Just how a single protein can misfold into different aggregate conformations, however, has confounded scientists.

Now, Motomasa Tanaka and colleagues at the RIKEN Brain Science Institute in Wako have reported that small clusters of prion proteins called oligomers, which develop from monomer proteins, determine the eventual shape of the larger prion aggregate1. The findings were published in the journal Nature Chemical Biology in collaboration with researchers from the United States and from the RIKEN SPring-8 Center in Harima.

The research team used a yeast model system to study prion misfolding and aggregation, because yeast contain a prion-like protein called Sup35. This yeast protein misfolds into different aggregate conformations that cause the yeast to turn various colors—from white to pink—when they are grown on nutrient plates. A synthetic version of Sup35 can also form these distinct conformations when grown at different temperatures.

Using various biophysical techniques, the researchers observed that the synthetic Sup35 formed oligomers when they were grown at a low temperature, but not at a high temperature. The Sup35 grown at a low temperature made the yeast turn white, while Sup35 grown at a high temperature made the yeast turn pink. This suggests that the oligomers, formed at only the low temperature, may be an intermediate step in the formation of the larger aggregates that cause the ‘white’ phenotype.

The team then investigated which amino acid region of Sup35 is involved in the formation of the oligomer. By mutating various amino acids of the Sup35 protein, the researchers found that the parts of the protein required for oligomer formation were different to those required for creation of the larger aggregate. In addition, while oligomer formation was involved in acquisition of the ‘white’ phenotype, it was not required for driving the growth of the larger prion aggregate. These findings suggest that oligomers serve as an initial scaffold to determine the eventual shape—and therefore the physiological characteristics—of the larger prion aggregate. Tanaka proposes that “inhibiting these interactions between prion proteins could become a therapeutic strategy for the neurodegenerative prion diseases.”

The corresponding author for this highlight is based at the Tanaka Research Unit, RIKEN Brain Science Institute

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/eng/research/6230
http://www.researchsea.com

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>