Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Unexpected Find Opens Up New Front in Effort to Stop HIV

24.01.2011
HIV’s Trickery within the Macrophage Revealed

HIV adapts in a surprising way to survive and thrive in its hiding spot within the human immune system, scientists have learned. While the finding helps explain why HIV remains such a formidable foe after three decades of research – more than 30 million people worldwide are infected with HIV – it also offers scientists a new, unexpected way to try to stop the virus.

The work by researchers at the University of Rochester Medical Center and Emory University was published Dec. 10 in the Journal of Biological Chemistry.

It’s thanks largely to its ability to hide out in the body that HIV is able to survive for decades and ultimately win out against the body’s relentless immune assault. One of the virus’s favorite hiding spots is an immune cell called a macrophage, whose job is to chew up and destroy foreign invaders and cellular debris.

For more than 15 years, Baek Kim, Ph.D., has been fascinated by HIV’s ability to take cover in a cell whose very job is to kill foreign cells. In the last couple of years Kim, professor of Microbiology and Immunology at the University of Rochester Medical Center, has teamed with Emory scientist Raymond F. Schinazi, Ph.D., D.Sc., director of the Laboratory of Biochemical Pharmacology at Emory’s Center for AIDS Research, to test whether the virus is somehow able to sidestep its usual way of replicating when it’s in the macrophage.

The pair found that when HIV faces a shortage of the molecular machinery needed to copy itself within the macrophage, the virus adapts by bypassing one of the molecules it usually uses and instead tapping another molecule that is available.

Normally, the virus uses dNTP (deoxynucleoside triphosphate, the building blocks for making the viral genetic machinery) to get the job done, but dNTP is hardly present in macrophages – macrophages don’t need it, since they don’t replicate. But macrophages do have high levels of a closely related molecule called rNTP (ribonucleoside triphosphate), which is more versatile and is used in cells in a variety of ways. The team found that HIV uses primarily rNTP instead of dNTP to replicate inside macrophages.

“The virus would normally just use dNTP, but it’s simply not available in great quantities in the macrophage. So HIV begins to use rNTP, which is quite similar from a chemical perspective. This is a surprise,” said Kim. “The virus just wants to finish replicating, and it will utilize any resource it can to do so.”

When the team blocked the ability of the virus to interact with rNTP, HIV’s ability to replicate in macrophages was slashed by more than 90 percent.

The work opens up a new front in the battle against HIV. Current drugs generally target dNTP, not rNTP, and take aim at the infection in immune cells known at CD4+ T cells. The new research opens up the possibility of targeting the virus in macrophages – where the virus is out of reach of most of today’s drugs.

“The first cells that HIV infects in the genital tract are non-dividing target cell types such as macrophages and resting T cells” said Kim. “Current drugs were developed to be effective only when the infection has already moved beyond these cells. Perhaps we can use this information to help create a microbicide to stop the virus or limit its activity much earlier.”

Kim notes that a compound that targets rNTP already exists. Cordycepin in an experimental compound, derived from wild mushrooms, that is currently being tested as an anti-cancer drug. The team plans to test similar compounds for anti-HIV activity.

“This significant breakthrough was unappreciated prior to our paper. We are now exploiting new anti-HIV drugs jointly based on this novel approach that are essentially not toxic and that can be used to treat and prevent HIV infections,” said Schinazi, who has developed several of the drugs currently used to treat HIV patients.

The first authors of the paper, who contributed equally to the project, are graduate students Edward Kennedy of Rochester and Christina Gavegnano of Emory. Other authors include, from Rochester, graduate students Laura Nguyen, Rebecca Slater and Amanda Lucas; and from Emory, post-doctoral associate Emilie Fromentin.

The work was funded by the National Institute of Allergy and Infectious Diseases and the U.S. Department of Veterans Affairs, where Schinazi is also employed.

For Media Inquiries:
Tom Rickey
(585) 275-7954

Tom Rickey | EurekAlert!
Further information:
http://www.rochester.edu

Further reports about: HIV HIV infection T cells anti-HIV drug building block cell type immune cell

More articles from Life Sciences:

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Link Discovered between Immune System, Brain Structure and Memory

26.04.2017 | Life Sciences

New survey hints at exotic origin for the Cold Spot

26.04.2017 | Physics and Astronomy

NASA examines newly formed Tropical Depression 3W in 3-D

26.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>