Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding the Electricity of Breast Cancer Cells

01.04.2010
Research Could Lead to the Development of Earlier Detection

Building on previous findings demonstrating that breast cancer cells emit unique electromagnetic signals, engineering researchers at the University of Arkansas have found that a single cancerous cell produces electric signals proportional to the speed at which the cell divides. Their model reveals that heightened movement of ions at the boundary of the cancerous cell produces larger electrical signals.

The findings will help scientists understand the biophysics associated with rapidly dividing breast cancer cells and may contribute to the development of new detection and treatment techniques.

“All cells maintain a difference in voltage between their intracellular and extracellular media,” said Ahmed Hassan, doctoral student in electrical engineering. “Previous work found that MCF-7, a standard breast cancer cell line, hyperpolarizes – meaning simply that it increases its membrane voltage in negative polarity – during two critical stages prior to cell division. What we’re trying to do is build a better understanding of how this complicated mechanism works.”

Hassan works under the direction of Magda El-Shenawee, associate professor of electrical engineering. In previous work, El-Shenawee created a microwave-imaging system that provides sharp, three-dimensional images of hard objects buried within soft tissue. She was able to do this by transmitting and receiving electromagnetic waves that traveled through soft tissue and bounced off the hard object.

The new direction of El-Shenawee’s research does not require transmission of electromagnetic waves. Rather, in a process known as passive biopotential diagnosis – special sensors only receive electromagnetic waves. They read the unique signals released by activity within and around a growing tumor. As mentioned above, Hassan and El-Shenawee focused on a single cell, which may help researchers recognize abnormalities long before cell aggregates reach the tumor stage. A 1-millimeter tumor comprises tens of thousands of cells.

To understand the biomagnetic signals of a single breast cancer cell, Hassan and El-Shenawee created a two-dimensional, biophysics-based model with computer simulations that allowed them to obtain densities of electrical current based on space and time. They then integrated the current densities to calculate the biomagnetic fields produced by a cancerous lesion. The model avoided the risk of oversimplification by placing the cell in a semi-finite, dynamic environment with realistic anatomical features such as cell membranes, blood vessels and surrounding tissue boundaries.

They focused on hyperpolarization during what is known as the G1/Synthesis transition, a critical process that occurs within a cell before it starts to divide. During the G1 stage, the cell grows and proteins are created. The Synthesis stage includes DNA synthesis and chromosome replication to provide a new set of chromosomes for a new cell. As Hassan mentioned, previous experimental measurements on cancerous MCF-7 cells revealed that during the transition between the G1 and Synthesis stages, electrical changes occurred.

The numerical results of the Arkansas research validated the findings above. Beyond this, Hassan and El-Shenawee discovered that shorter G1/Synthesis-transition durations and heightened movement of ions at the cell boundary was associated with a higher magnitude of electromagnetic signals.

In a future study, the researchers will couple the single-cell model with a tumor-growth model to produce simulations of electric signals created by a whole tumor.

“We are motivated to provide a tool for understanding experimental measurements that prove that growing tumor cells indeed generate electric signals,” El-Shenawee said. “This multidisciplinary model has the potential to advance the biopotential diagnosis system to achieve high accuracy in measuring benign versus malignant tumors. Another benefit is that there would be no side effects, as no chemical or radiation would be sent into the body.”

The researchers’ computer modeling work was done using Star of Arkansas, a supercomputer in the Arkansas High Performance Computing Center at the University of Arkansas.

Their study was published in a recent issue of IEEE Transactions on Biomedical Engineering. Copies of the study are available upon request.

CONTACTS:
Magda El-Shenawee, associate professor, electrical engineering
College of Engineering
479-575-6582, magda@uark.edu
Ahmed Hassan, doctoral student, electrical engineering
College of Engineering
479-575-7757, amhassan@uark.edu
Matt McGowan, science and research communications officer
University Relations
479-575-4246, dmcgowa@uark.edu

Matt McGowan | Newswise Science News
Further information:
http://www.uark.edu

More articles from Life Sciences:

nachricht Biomarkers for identifying Tumor Aggressiveness
26.07.2017 | Max-Delbrück-Centrum für Molekulare Medizin in der Helmholtz-Gemeinschaft

nachricht The dense vessel network regulates formation of thrombocytes in the bone marrow
25.07.2017 | Rudolf-Virchow-Zentrum für Experimentelle Biomedizin der Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Carbon Nanotubes Turn Electrical Current into Light-emitting Quasi-particles

Strong light-matter coupling in these semiconducting tubes may hold the key to electrically pumped lasers

Light-matter quasi-particles can be generated electrically in semiconducting carbon nanotubes. Material scientists and physicists from Heidelberg University...

Im Focus: Flexible proximity sensor creates smart surfaces

Fraunhofer IPA has developed a proximity sensor made from silicone and carbon nanotubes (CNT) which detects objects and determines their position. The materials and printing process used mean that the sensor is extremely flexible, economical and can be used for large surfaces. Industry and research partners can use and further develop this innovation straight away.

At first glance, the proximity sensor appears to be nothing special: a thin, elastic layer of silicone onto which black square surfaces are printed, but these...

Im Focus: 3-D scanning with water

3-D shape acquisition using water displacement as the shape sensor for the reconstruction of complex objects

A global team of computer scientists and engineers have developed an innovative technique that more completely reconstructs challenging 3D objects. An ancient...

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA mission surfs through waves in space to understand space weather

25.07.2017 | Physics and Astronomy

Strength of tectonic plates may explain shape of the Tibetan Plateau, study finds

25.07.2017 | Earth Sciences

The dense vessel network regulates formation of thrombocytes in the bone marrow

25.07.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>