Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding a protein's role in familial Alzheimer's disease

15.11.2013
Novel genomic approach reveals gene mutation isn't simple answer

Researchers at the University of California, San Diego School of Medicine have used genetic engineering of human induced pluripotent stem cells to specifically and precisely parse the roles of a key mutated protein in causing familial Alzheimer's disease (AD), discovering that simple loss-of-function does not contribute to the inherited form of the neurodegenerative disorder.

The findings, published online in the journal Cell Reports, could help elucidate the still-mysterious mechanisms of Alzheimer's disease and better inform development of effective drugs, said principal investigator Lawrence Goldstein, PhD, professor in the Departments of Cellular and Molecular Medicine and Neurosciences and director of the UC San Diego Stem Cell Program.

"In some ways, this is a powerful technical demonstration of the promise of stem cells and genomics research in better understanding and ultimately treating AD," said Goldstein, who is also director of the new Sanford Stem Cell Clinical Center at UC San Diego. "We were able to identify and assign precise limits on how a mutation works in familial AD. That's an important step in advancing the science, in finding drugs and treatments that can slow, maybe reverse, the disease's devastating effects."

Familial AD is a subset of early-onset Alzheimer's disease that is caused by inherited gene mutations. Most cases of Alzheimer's disease – there are an estimated 5.2 million Americans with AD – are sporadic and do not have a precise known cause, though age is a primary risk factor.

In their study, Goldstein and colleagues examined presenilin 1 (PS1), a protein that helps break down other proteins, which is a vital biological necessity for cells and for life. Most notably, PS1 is the catalytic or action-driving component of gamma-secretase, an enzyme that cleaves or splits type-1 transmembrane proteins used to transport cellular material from one side of a cell's membrane to the other, from inside to outside or vice versa.

Among the type-1 proteins cleaved by gamma-secretase is amyloid precursor protein or APP, whose function remains incompletely known. When APP is cleaved by gamma-secretase, peptide fragments called amyloid beta are created. Some researchers believe the accumulation of certain kinds of amyloid beta may result in neuron-killing plaques in the brain, a consequence that has been strongly linked to the development of AD.

Ordinarily, the "molecular scissors" of PS1 do their cutting with no adverse effect, according to Goldstein. But perhaps 20 percent of the time, he said there are "bad cuts" that result in potentially harmful amyloid beta fragments. "Our research demonstrates very precisely that mutations in PS1 double the frequency of bad cuts," he said.

The researchers achieved their unprecedented precision by generating differentiated, purified neurons from stem cells derived from noted biologist Craig Venter, whose genome was fully sequenced and released for public research use in 2007. The created neurons contained different alleles or forms of the mutated gene that produces PS1.

"We were able to investigate exactly how specific mutations and their frequency change the behavior of neurons," said Goldstein. "We took finely engineered cells that we knew and understood and then looked how a single mutation caused changes in the molecular scissors and what happened next."

To exclude potential off-target artifacts observed in previous genome editing work, study co-author Kun Zhang, PhD, associate professor in the Department of Bioengineering at UC San Diego, said he and colleagues used whole exome sequencing to compare the engineered cells with other control cells. They determined that their genome editing approach did not introduce any additional mutations.

Co-authors include Grace Woodruff, Jessica E. Young, Fernando J. Martinez, Floyd Buen and Jennifer Kinaga, Department of Cellular and Molecular Medicine, Institute for Genomic Medicine and Institute for Engineering in Medicine, UCSD; Athurva Gore and Zhe Li, Department of Bioengineering, Institute for Genomic Medicine and Institute of Engineering in Medicine, UCSD; and Shauna H. Yuan, Department of Neurosciences, Institute of Genomic Medicine and Institute of Engineering in Medicine, UCSD.

Funding support for this research came, in part, from the California Institute of Regenerative Medicine, the National Institutes of Health and National Institutes of Aging (grant R01AG032180); and the A.P. Giannini Foundation for Medical Research.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Supersensitive through quantum entanglement

28.06.2017 | Physics and Astronomy

X-ray photoelectron spectroscopy under real ambient pressure conditions

28.06.2017 | Physics and Astronomy

Mice provide insight into genetics of autism spectrum disorders

28.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>