Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Understanding a protein's role in familial Alzheimer's disease

15.11.2013
Novel genomic approach reveals gene mutation isn't simple answer

Researchers at the University of California, San Diego School of Medicine have used genetic engineering of human induced pluripotent stem cells to specifically and precisely parse the roles of a key mutated protein in causing familial Alzheimer's disease (AD), discovering that simple loss-of-function does not contribute to the inherited form of the neurodegenerative disorder.

The findings, published online in the journal Cell Reports, could help elucidate the still-mysterious mechanisms of Alzheimer's disease and better inform development of effective drugs, said principal investigator Lawrence Goldstein, PhD, professor in the Departments of Cellular and Molecular Medicine and Neurosciences and director of the UC San Diego Stem Cell Program.

"In some ways, this is a powerful technical demonstration of the promise of stem cells and genomics research in better understanding and ultimately treating AD," said Goldstein, who is also director of the new Sanford Stem Cell Clinical Center at UC San Diego. "We were able to identify and assign precise limits on how a mutation works in familial AD. That's an important step in advancing the science, in finding drugs and treatments that can slow, maybe reverse, the disease's devastating effects."

Familial AD is a subset of early-onset Alzheimer's disease that is caused by inherited gene mutations. Most cases of Alzheimer's disease – there are an estimated 5.2 million Americans with AD – are sporadic and do not have a precise known cause, though age is a primary risk factor.

In their study, Goldstein and colleagues examined presenilin 1 (PS1), a protein that helps break down other proteins, which is a vital biological necessity for cells and for life. Most notably, PS1 is the catalytic or action-driving component of gamma-secretase, an enzyme that cleaves or splits type-1 transmembrane proteins used to transport cellular material from one side of a cell's membrane to the other, from inside to outside or vice versa.

Among the type-1 proteins cleaved by gamma-secretase is amyloid precursor protein or APP, whose function remains incompletely known. When APP is cleaved by gamma-secretase, peptide fragments called amyloid beta are created. Some researchers believe the accumulation of certain kinds of amyloid beta may result in neuron-killing plaques in the brain, a consequence that has been strongly linked to the development of AD.

Ordinarily, the "molecular scissors" of PS1 do their cutting with no adverse effect, according to Goldstein. But perhaps 20 percent of the time, he said there are "bad cuts" that result in potentially harmful amyloid beta fragments. "Our research demonstrates very precisely that mutations in PS1 double the frequency of bad cuts," he said.

The researchers achieved their unprecedented precision by generating differentiated, purified neurons from stem cells derived from noted biologist Craig Venter, whose genome was fully sequenced and released for public research use in 2007. The created neurons contained different alleles or forms of the mutated gene that produces PS1.

"We were able to investigate exactly how specific mutations and their frequency change the behavior of neurons," said Goldstein. "We took finely engineered cells that we knew and understood and then looked how a single mutation caused changes in the molecular scissors and what happened next."

To exclude potential off-target artifacts observed in previous genome editing work, study co-author Kun Zhang, PhD, associate professor in the Department of Bioengineering at UC San Diego, said he and colleagues used whole exome sequencing to compare the engineered cells with other control cells. They determined that their genome editing approach did not introduce any additional mutations.

Co-authors include Grace Woodruff, Jessica E. Young, Fernando J. Martinez, Floyd Buen and Jennifer Kinaga, Department of Cellular and Molecular Medicine, Institute for Genomic Medicine and Institute for Engineering in Medicine, UCSD; Athurva Gore and Zhe Li, Department of Bioengineering, Institute for Genomic Medicine and Institute of Engineering in Medicine, UCSD; and Shauna H. Yuan, Department of Neurosciences, Institute of Genomic Medicine and Institute of Engineering in Medicine, UCSD.

Funding support for this research came, in part, from the California Institute of Regenerative Medicine, the National Institutes of Health and National Institutes of Aging (grant R01AG032180); and the A.P. Giannini Foundation for Medical Research.

Scott LaFee | EurekAlert!
Further information:
http://www.ucsd.edu

More articles from Life Sciences:

nachricht Navigational view of the brain thanks to powerful X-rays
18.10.2017 | Georgia Institute of Technology

nachricht Separating methane and CO2 will become more efficient
18.10.2017 | KU Leuven

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Osaka university researchers make the slipperiest surfaces adhesive

18.10.2017 | Materials Sciences

Space radiation won't stop NASA's human exploration

18.10.2017 | Physics and Astronomy

Los Alamos researchers and supercomputers help interpret the latest LIGO findings

18.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>