Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK Study Advances New Target for CNS Drug Development

18.01.2010
A breakthrough discovery by scientists at the University of Kentucky could someday lead to new treatments for a variety of diseases of the brain, spinal cord and the eye.
Researchers led by Royce Mohan, associate professor of ophthalmology and visual science in the UK College of Medicine, found that the small molecule withaferin A can simultaneously target two key proteins — vimentin and glial fibrillary acidic protein (GFAP) — implicated in a damaging biological process called reactive gliosis.

Both vimentin and GFAP, members of a family of proteins called intermediate filaments, are important factors in the stress response of the central nervous system (CNS). But pathology in the CNS from a traumatic injury or neurodegenerative disease can cause overexpression of vimentin and GFAP and lead to reactive gliosis.

During gliosis, astrocyte cells that express vimentin and GFAP accumulate into dense, fibrous patches called glial scars, which interfere with normal functioning of the CNS. Gliosis is a significant feature of many disorders of the CNS, including multiple sclerosis, Alzheimer's disease, stroke, and traumatic brain and spinal cord injury, and it is also central to major retinal diseases such as age-related macular degeneration, diabetic retinopathy and glaucoma.

Mohan’s lab discovered that withaferin A binds to both vimentin and GFAP within an unique pocket when these proteins are in their soluble, tetrameric form. This finding makes withaferin A an appealing therapeutic lead for drug-development research, Mohan said, and he owes great credit to the interdisciplinary team of collaborators who contributed to extending this finding.

Mohan describes the discovery as serendipitous. Originally, his team was investigating withaferin A as an angiogenesis inhibitor, a type of drug used to slow the development and growth of new blood vessels. Such drugs are useful in treating cancers and various conditions of the eye, such as corneal neovascularization, wet-stage macular degeneration and glaucoma.

Using an approach called reverse chemical genetics, Mohan's lab started with the identification of withaferin A as a vimentin probe, and then looked for CNS pathological indications where the related type III intermediate filament GFAP is critically involved.

"It was fortuitous that we looked at the retina of injured mice," Mohan said. "This drug was causing simultaneous inhibition of both corneal angiogenesis and retinal gliosis, a finding that is relevant to combat ocular trauma from the alarming incidence of blast injuries. Rarely does one get the opportunity to make an important discovery that advances on two drug targets at once."

This research was supported by grants from the National Institutes of Health, the RPB Foundation and the Kentucky Science and Technology Corporation. The study, "Withaferin A Targets Intermediate Filaments GFAP and Vimentin in a Model of Retinal Gliosis," was published online Jan. 4 in the Journal of Biological Chemistry, with senior scientist Paola Bargagna-Mohan as lead author. Additional authors are: Riya R. Paranthan, Adel Hamza, Neviana Dimova, Beatrice Trucchi, Cidambi Srinivasan, Gregory I. Elliott, Chang-Guo Zhan, Daniel L. Lau, Haiyan Zhu, Kousuke Kasahara, Masaki Inagaki, Franca Cambi and Royce Mohan.

Keith Hautala | EurekAlert!
Further information:
http://www.uky.edu

Further reports about: CNS Drug Delivery End User Development GFAP Gliosis Kentucky Target blood vessel key protein

More articles from Life Sciences:

nachricht Researchers uncover protein-based “cancer signature”
05.12.2016 | Universität Basel

nachricht The Nagoya Protocol Creates Disadvantages for Many Countries when Applied to Microorganisms
05.12.2016 | Leibniz-Institut DSMZ-Deutsche Sammlung von Mikroorganismen und Zellkulturen GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

IHP presents the fastest silicon-based transistor in the world

05.12.2016 | Power and Electrical Engineering

InLight study: insights into chemical processes using light

05.12.2016 | Materials Sciences

High-precision magnetic field sensing

05.12.2016 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>