Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UK Study Advances New Target for CNS Drug Development

18.01.2010
A breakthrough discovery by scientists at the University of Kentucky could someday lead to new treatments for a variety of diseases of the brain, spinal cord and the eye.
Researchers led by Royce Mohan, associate professor of ophthalmology and visual science in the UK College of Medicine, found that the small molecule withaferin A can simultaneously target two key proteins — vimentin and glial fibrillary acidic protein (GFAP) — implicated in a damaging biological process called reactive gliosis.

Both vimentin and GFAP, members of a family of proteins called intermediate filaments, are important factors in the stress response of the central nervous system (CNS). But pathology in the CNS from a traumatic injury or neurodegenerative disease can cause overexpression of vimentin and GFAP and lead to reactive gliosis.

During gliosis, astrocyte cells that express vimentin and GFAP accumulate into dense, fibrous patches called glial scars, which interfere with normal functioning of the CNS. Gliosis is a significant feature of many disorders of the CNS, including multiple sclerosis, Alzheimer's disease, stroke, and traumatic brain and spinal cord injury, and it is also central to major retinal diseases such as age-related macular degeneration, diabetic retinopathy and glaucoma.

Mohan’s lab discovered that withaferin A binds to both vimentin and GFAP within an unique pocket when these proteins are in their soluble, tetrameric form. This finding makes withaferin A an appealing therapeutic lead for drug-development research, Mohan said, and he owes great credit to the interdisciplinary team of collaborators who contributed to extending this finding.

Mohan describes the discovery as serendipitous. Originally, his team was investigating withaferin A as an angiogenesis inhibitor, a type of drug used to slow the development and growth of new blood vessels. Such drugs are useful in treating cancers and various conditions of the eye, such as corneal neovascularization, wet-stage macular degeneration and glaucoma.

Using an approach called reverse chemical genetics, Mohan's lab started with the identification of withaferin A as a vimentin probe, and then looked for CNS pathological indications where the related type III intermediate filament GFAP is critically involved.

"It was fortuitous that we looked at the retina of injured mice," Mohan said. "This drug was causing simultaneous inhibition of both corneal angiogenesis and retinal gliosis, a finding that is relevant to combat ocular trauma from the alarming incidence of blast injuries. Rarely does one get the opportunity to make an important discovery that advances on two drug targets at once."

This research was supported by grants from the National Institutes of Health, the RPB Foundation and the Kentucky Science and Technology Corporation. The study, "Withaferin A Targets Intermediate Filaments GFAP and Vimentin in a Model of Retinal Gliosis," was published online Jan. 4 in the Journal of Biological Chemistry, with senior scientist Paola Bargagna-Mohan as lead author. Additional authors are: Riya R. Paranthan, Adel Hamza, Neviana Dimova, Beatrice Trucchi, Cidambi Srinivasan, Gregory I. Elliott, Chang-Guo Zhan, Daniel L. Lau, Haiyan Zhu, Kousuke Kasahara, Masaki Inagaki, Franca Cambi and Royce Mohan.

Keith Hautala | EurekAlert!
Further information:
http://www.uky.edu

Further reports about: CNS Drug Delivery End User Development GFAP Gliosis Kentucky Target blood vessel key protein

More articles from Life Sciences:

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

nachricht How protein islands form
15.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

Im Focus: Scientists improve forecast of increasing hazard on Ecuadorian volcano

Researchers from the University of Miami (UM) Rosenstiel School of Marine and Atmospheric Science, the Italian Space Agency (ASI), and the Instituto Geofisico--Escuela Politecnica Nacional (IGEPN) of Ecuador, showed an increasing volcanic danger on Cotopaxi in Ecuador using a powerful technique known as Interferometric Synthetic Aperture Radar (InSAR).

The Andes region in which Cotopaxi volcano is located is known to contain some of the world's most serious volcanic hazard. A mid- to large-size eruption has...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

New thruster design increases efficiency for future spaceflight

16.08.2017 | Physics and Astronomy

Transporting spin: A graphene and boron nitride heterostructure creates large spin signals

16.08.2017 | Materials Sciences

A new method for the 3-D printing of living tissues

16.08.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>