Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA scientists team up to define first-ever sequence of biologically important carbohydrate

19.10.2011
Finding has implications for drug development as well as diseases such as cancer

If genes provide the blueprint for life and proteins are the machines that do much of the work for cells, then carbohydrates that are linked to proteins are among the tools that enable cells to communicate with the outside world and each other. But until now, scientists have been unable to determine the structure of a biologically important so-called GAG proteoglycan-or even to agree whether these remarkably complex molecules have well-defined structures.

In a paper published in the early online edition of the journal Nature Chemical Biology, however, a team of scientists from the University of Georgia and Rensselaer Polytechnic Institute announced that it has, for the first time, determined the sequence and structure of a glycosaminoglycan, or GAG, proteoglycan.

"The fact that a structure even exists is surprising, because people had the sense that the complexity of these molecules pointed to a randomness," said study co-author Jonathan Amster, professor and head of the department of chemistry in the UGA Franklin College of Arts and Sciences. "There are many different areas in medicine that will be enabled by understanding carbohydrates at this fundamental level."

Modifications to the GAG, or carbohydrate biopolymer, portion of proteoglycans have been associated with the presence and malignancy of certain cancers, for example, and the researchers noted that the identification of carbohydrates that are involved in disease opens the door to the development of drugs that can block their action.

The field of glycobiology is still in its infancy, largely because attempts to sequence proteoglycans have, until now, ended in frustration and failure. A small sample of DNA can be amplified many times, and its sequence, or arrangement of molecules, can be determined quickly with modern tools. DNA is simply a set of instructions for making proteins, so a sample of DNA also can allow scientists to produce copious quantities of protein for study.

Carbohydrates, however, are a bit messier. Scientists don't fully understand how cells create them, and a given proteoglycan exists in multiple forms that are similar but not quite the same.

The researchers chose the simplest known GAG proteoglycan, a compound known as bikunin that is used in Japan for the treatment of acute pancreatitis, for their study. Of course, simplicity is a relative term: the sugar is composed of up to 55 distinct carbohydrate rings, which means that there are 210 billion different sequence possibilities. Previous studies performed over the past five years by the researchers that identified common sequences within the carbohydrate decreased the expected number of sequences to a mere 43 million.

Past attempts to sequence proteoglycans have relied on the so-called "bottom up" approach in which scientists use enzymes to chop a molecule into its component parts and then try to put it back together, like a puzzle. Using an alternative approach known as the "top down" method, the scientists placed the compound into high-powered mass spectrometers in both the Amster and Linhardt labs that allowed them to break the compound in predictable places. With larger puzzle pieces to work with, the scientists were able to deduce the structure of bikunin.

"Now that we have demonstrated that bikunin, a small chondroitin sulfate proteoglycan, has sequence, we are moving on to larger, more structurally complex dermatan sulfate and heparan sulfate proteoglycans," said study co-author Robert Linhardt, professor at Rensselaer Polytechnic Institute. "These show important biological activities in development and in cancer, and we are optimistic that our sequencing approach will work here as well."

Like all groundbreaking scientific discoveries, the finding actually raises more questions than it answers. Amster explained that the addition of sulfate to the sugar, for example, could in principle occur anywhere along the carbohydrate chain. What the researchers found, however, was that the sites of sulfation occur only in particular rings. "That was the unexpected finding," Amster said, "because based on the current understanding of biology, there is no known mechanism for controlling that type of specificity."

As they work to determine the structure of more complex proteoglycans, the scientists hope that their findings will encourage other researchers to consider the role that they play in health.

"We know that carbohydrates are how cells communicate with each other and their environment, but they're also likely to play many roles that we can't even envision yet," Amster said. "And in order to understand them, we need to be able to study them at this molecular level."

In addition to Amster and Linhardt, additional authors include Mellisa Ly and Tatiana Laremore from Rensselaer Polytechnic Institute, Franklin Leach from UGA, and Toshihiko Toida from Chiba University in Japan.

The study was funded by the Institute of General Medical Sciences of the National Institutes of Health.

Sam Fahmy | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht Tag it EASI – a new method for accurate protein analysis
19.06.2018 | Max-Planck-Institut für Biochemie

nachricht How to track and trace a protein: Nanosensors monitor intracellular deliveries
19.06.2018 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Overdosing on Calcium

Nano crystals impact stem cell fate during bone formation

Scientists from the University of Freiburg and the University of Basel identified a master regulator for bone regeneration. Prasad Shastri, Professor of...

Im Focus: AchemAsia 2019 will take place in Shanghai

Moving into its fourth decade, AchemAsia is setting out for new horizons: The International Expo and Innovation Forum for Sustainable Chemical Production will take place from 21-23 May 2019 in Shanghai, China. With an updated event profile, the eleventh edition focusses on topics that are especially relevant for the Chinese process industry, putting a strong emphasis on sustainability and innovation.

Founded in 1989 as a spin-off of ACHEMA to cater to the needs of China’s then developing industry, AchemAsia has since grown into a platform where the latest...

Im Focus: First real-time test of Li-Fi utilization for the industrial Internet of Things

The BMBF-funded OWICELLS project was successfully completed with a final presentation at the BMW plant in Munich. The presentation demonstrated a Li-Fi communication with a mobile robot, while the robot carried out usual production processes (welding, moving and testing parts) in a 5x5m² production cell. The robust, optical wireless transmission is based on spatial diversity; in other words, data is sent and received simultaneously by several LEDs and several photodiodes. The system can transmit data at more than 100 Mbit/s and five milliseconds latency.

Modern production technologies in the automobile industry must become more flexible in order to fulfil individual customer requirements.

Im Focus: Sharp images with flexible fibers

An international team of scientists has discovered a new way to transfer image information through multimodal fibers with almost no distortion - even if the fiber is bent. The results of the study, to which scientist from the Leibniz-Institute of Photonic Technology Jena (Leibniz IPHT) contributed, were published on 6thJune in the highly-cited journal Physical Review Letters.

Endoscopes allow doctors to see into a patient’s body like through a keyhole. Typically, the images are transmitted via a bundle of several hundreds of optical...

Im Focus: Photoexcited graphene puzzle solved

A boost for graphene-based light detectors

Light detection and control lies at the heart of many modern device applications, such as smartphone cameras. Using graphene as a light-sensitive material for...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Munich conference on asteroid detection, tracking and defense

13.06.2018 | Event News

2nd International Baltic Earth Conference in Denmark: “The Baltic Sea region in Transition”

08.06.2018 | Event News

ISEKI_Food 2018: Conference with Holistic View of Food Production

05.06.2018 | Event News

 
Latest News

Carbon nanotube optics provide optical-based quantum cryptography and quantum computing

19.06.2018 | Physics and Astronomy

How to track and trace a protein: Nanosensors monitor intracellular deliveries

19.06.2018 | Life Sciences

New material for splitting water

19.06.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>