Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UGA scientists team up to define first-ever sequence of biologically important carbohydrate

19.10.2011
Finding has implications for drug development as well as diseases such as cancer

If genes provide the blueprint for life and proteins are the machines that do much of the work for cells, then carbohydrates that are linked to proteins are among the tools that enable cells to communicate with the outside world and each other. But until now, scientists have been unable to determine the structure of a biologically important so-called GAG proteoglycan-or even to agree whether these remarkably complex molecules have well-defined structures.

In a paper published in the early online edition of the journal Nature Chemical Biology, however, a team of scientists from the University of Georgia and Rensselaer Polytechnic Institute announced that it has, for the first time, determined the sequence and structure of a glycosaminoglycan, or GAG, proteoglycan.

"The fact that a structure even exists is surprising, because people had the sense that the complexity of these molecules pointed to a randomness," said study co-author Jonathan Amster, professor and head of the department of chemistry in the UGA Franklin College of Arts and Sciences. "There are many different areas in medicine that will be enabled by understanding carbohydrates at this fundamental level."

Modifications to the GAG, or carbohydrate biopolymer, portion of proteoglycans have been associated with the presence and malignancy of certain cancers, for example, and the researchers noted that the identification of carbohydrates that are involved in disease opens the door to the development of drugs that can block their action.

The field of glycobiology is still in its infancy, largely because attempts to sequence proteoglycans have, until now, ended in frustration and failure. A small sample of DNA can be amplified many times, and its sequence, or arrangement of molecules, can be determined quickly with modern tools. DNA is simply a set of instructions for making proteins, so a sample of DNA also can allow scientists to produce copious quantities of protein for study.

Carbohydrates, however, are a bit messier. Scientists don't fully understand how cells create them, and a given proteoglycan exists in multiple forms that are similar but not quite the same.

The researchers chose the simplest known GAG proteoglycan, a compound known as bikunin that is used in Japan for the treatment of acute pancreatitis, for their study. Of course, simplicity is a relative term: the sugar is composed of up to 55 distinct carbohydrate rings, which means that there are 210 billion different sequence possibilities. Previous studies performed over the past five years by the researchers that identified common sequences within the carbohydrate decreased the expected number of sequences to a mere 43 million.

Past attempts to sequence proteoglycans have relied on the so-called "bottom up" approach in which scientists use enzymes to chop a molecule into its component parts and then try to put it back together, like a puzzle. Using an alternative approach known as the "top down" method, the scientists placed the compound into high-powered mass spectrometers in both the Amster and Linhardt labs that allowed them to break the compound in predictable places. With larger puzzle pieces to work with, the scientists were able to deduce the structure of bikunin.

"Now that we have demonstrated that bikunin, a small chondroitin sulfate proteoglycan, has sequence, we are moving on to larger, more structurally complex dermatan sulfate and heparan sulfate proteoglycans," said study co-author Robert Linhardt, professor at Rensselaer Polytechnic Institute. "These show important biological activities in development and in cancer, and we are optimistic that our sequencing approach will work here as well."

Like all groundbreaking scientific discoveries, the finding actually raises more questions than it answers. Amster explained that the addition of sulfate to the sugar, for example, could in principle occur anywhere along the carbohydrate chain. What the researchers found, however, was that the sites of sulfation occur only in particular rings. "That was the unexpected finding," Amster said, "because based on the current understanding of biology, there is no known mechanism for controlling that type of specificity."

As they work to determine the structure of more complex proteoglycans, the scientists hope that their findings will encourage other researchers to consider the role that they play in health.

"We know that carbohydrates are how cells communicate with each other and their environment, but they're also likely to play many roles that we can't even envision yet," Amster said. "And in order to understand them, we need to be able to study them at this molecular level."

In addition to Amster and Linhardt, additional authors include Mellisa Ly and Tatiana Laremore from Rensselaer Polytechnic Institute, Franklin Leach from UGA, and Toshihiko Toida from Chiba University in Japan.

The study was funded by the Institute of General Medical Sciences of the National Institutes of Health.

Sam Fahmy | EurekAlert!
Further information:
http://www.uga.edu

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>