Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UF researchers develop gene therapy that could correct a common form of blindness

24.01.2012
A new gene therapy method developed by University of Florida researchers has the potential to treat a common form of blindness that strikes both youngsters and adults.
The technique works by replacing a malfunctioning gene in the eye with a normal working copy that supplies a protein necessary for light-sensitive cells in the eye to function. The findings are published today (Monday, Jan. 23) in the Proceedings of the National Academy of Sciences online.

Several complex and costly steps remain before the gene therapy technique can be used in humans, but once at that stage, it has great potential to change lives.

“Imagine that you can’t see or can just barely see, and that could be changed to function at some levels so that you could read, navigate, maybe even drive — it would change your life considerably,” said study co-author William W. Hauswirth, Ph.D., the Rybaczki-Bullard professor of ophthalmology in the UF College of Medicine and a professor and eminent scholar in department of molecular genetics and microbiology and the UF Genetics Institute. “Providing the gene that’s missing is one of the ultimate ways of treating disease and restoring significant visual function.”

The researchers tackled a condition called X-linked retinitis pigmentosa, a genetic defect that is passed from mothers to sons. Girls carry the trait, but do not have the kind of vision loss seen among boys. About 100,000 people in the U.S. have a form of retinitis pigmentosa, which is characterized by initial loss of peripheral vision and night vision, which eventually progresses to tunnel vision, then blindness. In some cases, loss of sight coincides with the appearance of dark-colored areas on the usually orange-colored retina.

The UF researchers previously had success pioneering the use of gene therapy in clinical trials to reverse a form of blindness known as Leber’s congenital amaurosis. About 5 percent of people who have retinitis pigmentosa have this form, which affects the eye’s inner lining.

“That was a great advance, which showed that gene therapy is safe and lasts for years in humans, but this new study has the potential for a bigger impact, because it is treating a form of the disease that affects many more people,” said John G. Flannery, Ph.D., a professor of neurobiology at the University of California, Berkeley who is an expert in the design of viruses for delivering replacement genes. Flannery was not involved in the current study.

The X-linked form of retinitis pigmentosa addressed in the new study is the most common, and is caused by degeneration of light-sensitive cells in the eyes known as photoreceptor cells. It starts early in life, so though affected children are often born seeing, they gradually lose their vision.

“These children often go blind in the second decade of life, which is a very crucial period,” said co-author Alfred S. Lewin, Ph.D., a professor in the UF College of Medicine department of molecular genetics and microbiology and a member of the UF Genetics Institute. “This is a compelling reason to try to develop a therapy, because this disease hinders people’s ability to fully experience their world.”

Both Lewin and Hauswirth are members of UF’s Powell Gene Therapy Center.

The UF researchers and colleagues at the University of Pennsylvania performed the technically challenging task of cloning a working copy of the affected gene into a virus that served as a delivery vehicle to transport it to the appropriate part of the eye. They also cloned a genetic “switch” that would turn on the gene once it was in place, so it could start producing a protein needed for the damaged eye cells to function.

After laboratory tests proved successful, the researchers expanded their NIH-funded studies and were able to cure animals in which X-linked retinitis pigmentosa occurs naturally. The injected genes made their way only to the spot where they were needed, and not to any other places in the body. The study gave a good approximation of how the gene therapy might work in humans.

“The results are encouraging and the rescue of the damaged photoreceptor cells is quite convincing,” said Flannery, who is on the scientific advisory board of the Foundation Fighting Blindness, which provided some funding for the study. “Since this type of study is often the step before applying a treatment to human patients, showing that it works is critical.”

The researchers plan to repeat their studies on a larger scale over a longer term, and make a version of the virus that proves to be safe in humans. Once that is achieved, a pharmaceutical grade of the virus would have to be produced and tested before moving into clinical trials in humans. The researchers will be able to use much of the technology they have already developed and used successfully to restore vision.

Czerne M. Reid | EurekAlert!
Further information:
http://www.ufl.edu

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>