Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCLA Stem Cell Researcher Uncover Previously Unknown Patterns of DNA Methylation

07.06.2010
A previously unknown pattern in DNA methylation - an event that affects cell function by altering gene expression – has been uncovered for the first time by stem cell researchers at UCLA, a finding that could have implications in preventing some cancers and correcting defects in human stem cell lines.

The team of scientists discovered a relationship between DNA methylation and the positioning of nucleosomes, which compact and regulate access to DNA in the nucleus of a cell. The discovery was made using high-throughput DNA sequencing to study the sites on DNA where high levels of methylation were occurring, said Matteo Pellegrini and Steve Jacobsen, researchers with the Broad Stem Cell Research Center at UCLA and senior co-authors of the study.

The study appeared Sun., May 30, 2010 in the early online edition of the peer-reviewed journal Nature.

The processes required for the survival of a cell depend on the cell's ability to store and read the genetic information encoded in its DNA. Packaging the long DNA into a tiny nucleus is complicated because the DNA still needs to be accessible to the cell's molecular machinery. The molecules that compact DNA are called the nucleosome core particles. Each one has about 147 base pairs of DNA wrapped around it. This interaction forms a sort of scaffolding for compaction of the long DNA polymer, while allowing it to be accessible for events such as methylation.

DNA methylation is important in regulating genes that play a role in the differentiation of embryonic stem cells and in the development of some cancers, Jacobsen said.

“Changes in DNA methylation are behind a lot of what makes a stem cell a stem cell. As the cell differentiates, the DNA methylation tends to change. One aspect of understanding methylation is understanding its pattern and how it’s laid out within the cell,” said Jacobsen, a professor of molecular, cell and developmental biology and a Howard Hughes Medical Institute investigator.

In this study, the UCLA team found that the DNA wrapped around nucleosomes is more highly methylated than flanking DNA, which links adjacent DNA/nucleosome complexes.

“These results indicate that nucleosome positioning influences DNA methylation patterning throughout the genome and that DNA methyltransfereases (the enzymes that methylate DNA) preferentially target nucloesome-bound DNA,” said Pellegrini, an associate professor of molecular, cell and developmental biology and an informatics expert.

The work was initially done in Arabidopsis, a mustard weed commonly used in plant research. Once the DNA methylation and nucleosome positioning patterns emerged, they repeated the work in human stem cells. Pellegrini and Jacobsen found similar patterns in the human stem cells.

One of the most important, unknown aspects of DNA methylation, Jacobsen said, is how the cell determines where the event occurs, and the pattern of nucleosome positions has emerged as an important determinant of methylation.

The findings could have implications in fighting cancer because DNA methylation patterns go awry in cancer, often causing tumor suppressor genes to switch off. The more scientists know about the cellular mechanisms that lay down the correct DNA methylation patterns, the more that process can be manipulated. In the future, this type of research may lead to techniques that result in the ability to control the patterns that go awry and lead to cancer, thus preventing a malignancy.

And because DNA methylation is important in stem cell differentiation, this knowledge could lead to ways to correct defects in stem cells lines in the future.

Funding for the two-year study came from the National Science Foundation, the Howard Hughes Medical Institute and the Broad Stem Cell Research Center at UCLA.

The stem cell center was launched in 2005 with a UCLA commitment of $20 million over five years. A $20 million gift from the Eli and Edythe Broad Foundation in 2007 resulted in the renaming of the center. With more than 200 members, the Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research is committed to a multi-disciplinary, integrated collaboration of scientific, academic and medical disciplines for the purpose of understanding adult and human embryonic stem cells. The center supports innovation, excellence and the highest ethical standards focused on stem cell research with the intent of facilitating basic scientific inquiry directed towards future clinical applications to treat disease. The center is a collaboration of the David Geffen School of Medicine, UCLA’s Jonsson Cancer Center, the Henry Samueli School of Engineering and Applied Science and the UCLA College of Letters and Science. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu. To learn more about the center, visit our web site at http://www.stemcell.ucla.edu.

Kim Irwin | Newswise Science News
Further information:
http://www.mednet.ucla.edu

More articles from Life Sciences:

nachricht Warming ponds could accelerate climate change
21.02.2017 | University of Exeter

nachricht An alternative to opioids? Compound from marine snail is potent pain reliever
21.02.2017 | University of Utah

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Impacts of mass coral die-off on Indian Ocean reefs revealed

21.02.2017 | Earth Sciences

Novel breast tomosynthesis technique reduces screening recall rate

21.02.2017 | Medical Engineering

Use your Voice – and Smart Homes will “LISTEN”

21.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>