Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI-led team finds new way to boost potency of marijuana-like chemical in body

22.11.2011
Results underscore anandamide's potential as basis of safe painkillers

UC Irvine and Italian researchers have discovered a new means of enhancing the effects of anandamide – a natural, marijuana-like chemical in the body that provides pain relief.

Led by Daniele Piomelli, UCI's Louise Turner Arnold Chair in the Neurosciences, the team identified an "escort" protein in brain cells that transports anandamide to sites within the cell where enzymes break it down. They found that blocking this protein – called FLAT – increases anandamide's potency.

Previous work by the researchers indicates that compounds boosting anandamide's natural abilities could form the basis of pain medications that don't produce sedation, addiction or other central nervous system side effects common with existing painkillers, such as opiates.

"These findings raise hope that the analgesic properties of marijuana can be harnessed for new, safe drugs," said Piomelli, a professor of pharmacology. "Specific drug compounds we are creating that amplify the actions of natural, marijuana-like chemicals are showing great promise."

For the study, which appears in the Nov. 20 online version of Nature Neuroscience, he and his colleagues used computational methods to understand how FLAT binds with anandamide and escorts it to cell sites to be degraded by fatty acid amide hydrolase (FAAH) enzymes.

Anandamide has been dubbed "the bliss molecule" for its similarities to the active ingredient in marijuana. A neurotransmitter that's part of the body's endocannabinoid system, it's been shown in studies by Piomelli and others to play analgesic, antianxiety and antidepressant roles. It's also important in regulating food consumption. Blocking FAAH activity enhances several effects of anandamide without generating the "high" seen with marijuana.

Piomelli and his collaborators speculate that inhibiting FLAT (FAAH-like anandamide transporters) might be particularly useful in controlling certain forms of pain – that caused by damage to the central nervous system, for example – and curbing addiction to such drugs as nicotine and cocaine.

Researchers from UCI, Italy's University of Parma and University of Bologna, and the Italian Institute of Technology participated in the study, which was supported by grants from the U.S. National Institute on Drug Abuse, the U.S. National Institute on Alcohol Abuse & Alcoholism, and the U.S. National Institute of General Medical Sciences.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County's largest employer, UCI contributes an annual economic impact of $4.2 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

UCI maintains an online directory of faculty available as experts to the media. To access, visit www.today.uci.edu/experts. For UCI breaking news, visit www.zotwire.uci.edu.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

Further reports about: Flat ISDN Neuroscience UCI brain cell central nervous system computational method

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>