Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UCI-led team finds new way to boost potency of marijuana-like chemical in body

22.11.2011
Results underscore anandamide's potential as basis of safe painkillers

UC Irvine and Italian researchers have discovered a new means of enhancing the effects of anandamide – a natural, marijuana-like chemical in the body that provides pain relief.

Led by Daniele Piomelli, UCI's Louise Turner Arnold Chair in the Neurosciences, the team identified an "escort" protein in brain cells that transports anandamide to sites within the cell where enzymes break it down. They found that blocking this protein – called FLAT – increases anandamide's potency.

Previous work by the researchers indicates that compounds boosting anandamide's natural abilities could form the basis of pain medications that don't produce sedation, addiction or other central nervous system side effects common with existing painkillers, such as opiates.

"These findings raise hope that the analgesic properties of marijuana can be harnessed for new, safe drugs," said Piomelli, a professor of pharmacology. "Specific drug compounds we are creating that amplify the actions of natural, marijuana-like chemicals are showing great promise."

For the study, which appears in the Nov. 20 online version of Nature Neuroscience, he and his colleagues used computational methods to understand how FLAT binds with anandamide and escorts it to cell sites to be degraded by fatty acid amide hydrolase (FAAH) enzymes.

Anandamide has been dubbed "the bliss molecule" for its similarities to the active ingredient in marijuana. A neurotransmitter that's part of the body's endocannabinoid system, it's been shown in studies by Piomelli and others to play analgesic, antianxiety and antidepressant roles. It's also important in regulating food consumption. Blocking FAAH activity enhances several effects of anandamide without generating the "high" seen with marijuana.

Piomelli and his collaborators speculate that inhibiting FLAT (FAAH-like anandamide transporters) might be particularly useful in controlling certain forms of pain – that caused by damage to the central nervous system, for example – and curbing addiction to such drugs as nicotine and cocaine.

Researchers from UCI, Italy's University of Parma and University of Bologna, and the Italian Institute of Technology participated in the study, which was supported by grants from the U.S. National Institute on Drug Abuse, the U.S. National Institute on Alcohol Abuse & Alcoholism, and the U.S. National Institute of General Medical Sciences.

About the University of California, Irvine: Founded in 1965, UCI is a top-ranked university dedicated to research, scholarship and community service. Led by Chancellor Michael Drake since 2005, UCI is among the most dynamic campuses in the University of California system, with nearly 28,000 undergraduate and graduate students, 1,100 faculty and 9,000 staff. Orange County's largest employer, UCI contributes an annual economic impact of $4.2 billion. For more UCI news, visit www.today.uci.edu.

News Radio: UCI maintains on campus an ISDN line for conducting interviews with its faculty and experts. Use of this line is available for a fee to radio news programs/stations that wish to interview UCI faculty and experts. Use of the ISDN line is subject to availability and approval by the university.

UCI maintains an online directory of faculty available as experts to the media. To access, visit www.today.uci.edu/experts. For UCI breaking news, visit www.zotwire.uci.edu.

Tom Vasich | EurekAlert!
Further information:
http://www.uci.edu

Further reports about: Flat ISDN Neuroscience UCI brain cell central nervous system computational method

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>