Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

UAB researchers report breakthrough in HPV research

25.02.2009
New method to propogate HPV-18

UAB (University of Alabama at Birmingham) researchers have developed a new, inexpensive and efficient method for producing and studying a type of human papillomavirus (HPV) that causes cervical cancer. The process could speed understanding of how the virus functions and causes diseases, and lead to new prevention or treatment options.

In findings reported on-line and in print in January in Genes & Development, the UAB team detailed a process for producing HPV-18 in the laboratory. Previously, the virus had proven resistant to propagation in a lab setting, making it extremely difficult for scientists to study the virus and its effects on the host cells that it infects.

"The old method for propagating papillomaviruses in the lab for study was compromised by several factors," said Louise Chow, Ph.D., professor of biochemistry and molecular genetics at UAB and a study co-author. "We could only look at the viral DNA gene by individual gene, which gave us little insight into how the entire virus coordinated its replication program or how it interacted with the host cells and tissues that had been infected."

The new method, which Chow and study co-author Thomas Broker, Ph.D., professor of biochemistry and molecular genetics, have been developing for over 20 years, for the first time allows researchers to reproduce the entire infection cycle of HPV-18 in primary human skin cells, called keratinocytes. The breakthrough is the result of several years of intensive and creative efforts by graduate students Hsu-Kun (Wayne) Wang and Aaron Duffy, coauthors of the publication. Scientists now can observe how the virus behaves in the same cells it would infect in a human body.

"This system provides marvelous opportunities to understand how HPV works on a very basic, molecular level," Broker said. "The ongoing research will reveal promising targets for drug design, better understanding of how the new prophylactic HPV vaccines block infection and, for the first time, offer real hope that we can find a way to combat a virus that potentially affects 80 to 85 percent of women in the world, through therapeutic treatment of established infections."

Chow and Broker say the old method for producing HPV cells suffered from several factors, including the need to use bacterially derived recombinant DNA to introduce the viral DNA into skin cells. The presence of bacterial DNA sequences altered the HPV DNA so that it no longer closely resembled the natural viral structures found in human infections. Their new method generates circular viral genomes in the cells with high efficiency, and these can go on to replicate autonomously, without complications associated with the usual gene transfer vectors.

Another stumbling block was the need to use immortalized host cells to grow HPV. Immortalized cells have been genetically altered to live indefinitely and they do not differentiate properly into full-thickness skin tissue. While the use of immortalized cells as a host allowed the viral genome to be studied gene by gene, immortalized cells do not resemble the actual primary cells found in the body, preventing meaningful observations of how HPV functions in normal human host cells.

The new method also uses technology developed for skin grafting. It involves isolating primary human keratinocytes from foreskin removed during circumcision. The cells are grown in a 'raft' culture held at the liquid medium-air interface until they stratify, differentiate, and reach the thickness of normal epithelia, forming sheets of tissue virtually indistinguishable from real skin. If the viral DNA is introduced into the keratinocytes before they are placed into the raft culture environment, it carries out its full reproductive program including controlled RNA transcription, DNA replication, and packaging into the capsid proteins, as it would in the human body. Such progeny viruses are then capable of reinfecting fresh skin cells and repeating the entire infection cycle.

Currently there is no non-surgical treatment for HPV-associated lesions, and the current research in the Chow-Broker laboratory is focused on identifying inhibitors of essential viral activities so that antiviral agents can be developed to treat existing infections, either post-operatively or without any need for surgery.

HPV-18 is the only strain of the papillomavirus that the Chow-Broker lab has reproduced using the new method, but they say it should work on other HPV types. There are at least 120 different strains of HPV. While most are relatively harmless skin viruses, there are some, like HPV-18, that are linked to genital warts, dysplasias, and cervical and penile cancers and certain oral cancers. Such lesions can be identified using Pap smear cytology or new more sensitive and accurate molecular tests.

"HPV is part of the human condition," Broker said. "Virtually every adult in the world has been infected with HPV at some point in their life. Many of us will have no ill effects. Nonetheless nearly 1,000 women die each day from cervical cancer worldwide. Many victims are relatively young, and this preventable disease takes away about 30 years of life expectancy and leaves families without their wife and mother."

A vaccine is available that provides protection from the four HPV strains most associated with cervical cancer and genital warts. The vaccine is recommended for girls age 9-12 and can be given to women up to 26 years of age. Studies are ongoing to determine whether the vaccine prevents HPV infection in males.

"While we are very fortunate to have the HPV vaccine, there are holes in our understanding of how it works," Chow said. "Using our new method, we will be able to see how vaccine-induced antibodies actually prevent infection, and this could lead to a better understanding of how the vaccine works…and potentially to better vaccines."

The research in the Chow-Broker Laboratory is supported in part by the National Cancer Institute. For more information on HPV, go to the International Papillomavirus Society website at www.ipvsoc.org.

Bob Shepard | EurekAlert!
Further information:
http://www.uab.edu
http://www.ipvsoc.org

More articles from Life Sciences:

nachricht Modern genetic sequencing tools give clearer picture of how corals are related
17.08.2017 | University of Washington

nachricht The irresistible fragrance of dying vinegar flies
16.08.2017 | Max-Planck-Institut für chemische Ökologie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

Gold shines through properties of nano biosensors

17.08.2017 | Physics and Astronomy

Greenland ice flow likely to speed up: New data assert glaciers move over sediment, which gets more slippery as it gets wetter

17.08.2017 | Earth Sciences

Mars 2020 mission to use smart methods to seek signs of past life

17.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>