Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T researchers identify protein

08.09.2009
Researchers at the University of Toronto have identified a protein which plays a key role in the development of neurons, which could enhance our understanding of how the brain works, and how diseases such as Alzheimer's occur.

U of T graduate student John Calarco, working in the labs of Prof. Ben Blencowe (Donnelly Centre for Cellular and Biomolecular Research, University of Toronto) and Prof. Mei Zhen (Samuel Lunenfeld Research Institute, Mount Sinai Hospital), has identified a protein known as nSR100, which is only found in vertebrate species and which controls a network of "alternative splicing events" that are located in the messages of genes with critical functions in the formation of the nervous system. The findings are published in a paper in the current edition of the journal Cell.

Alternative splicing events greatly expand the diversity of the genetic messages and corresponding proteins produced by genes in vertebrate cells, and this process partially accounts for the evolution of remarkable complexity in organs such as the mammalian brain. Calarco, recipient of a prestigious Alexander Graham Bell Studentship, together with colleagues in the Blencowe Lab, identified nSR100 using computational and experimental methods and then determined its role in the control of alternative splicing in the brain. These studies revealed that nSR100 regulates splicing events in genes that help form neurons.

Collaborator and co-author Brian Ciruna and his colleagues at the the Hospital for Sick Children (SickKids) in Torontofurther demonstrated that nSR100 plays a critical role in the development of the vertebrate nervous system.

"The brain is by far the most complex organ in the human body and understanding how it functions represents one of the foremost challenges of biomedical research. A large number of neurological disorders arise when the development and function of certain neurons is impaired. A major research goal is therefore to identify key genes required for the specification and function of neurons in the brain, and nSR100 represents such a gene," said Prof. Blencowe, principal investigator on the study.

Calarco added that the findings present a new avenue of investigation for researchers. "The study provides intriguing insight into how the evolution of a single protein has contributed to the expansion of brain complexity in vertebrates – including humans.

Further investigation into the complex network of splicing events regulated by nSR100 may uncover important aspects of how neurons normally function and also how they become impaired in neurological diseases like Alzheimer's."

The authors' research is supported by funds from the Canadian Institutes of Health Research, the Ontario Research Fund and Genome Canada through the Ontario Genomics Institute.

Cell Paper Authors:

John A. Calarco (Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto); Simone Superina (Department of Molecular Genetics, University of Toronto and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children); Dave O'Hanlon (Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto); Mathieu Gabut (Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto);Bushra Raj (Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto); Qun Pan (Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto);Ursula Skalska (Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto); Laura Clarke(Department of Molecular Genetics, University of Toronto); Danielle Gelinas (Program in Developmental and Stem Cell Biology, The Hospital for Sick Children);Derek van der Kooy (Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto); Mei Zhen (Department of Molecular Genetics, University of Toronto and Samuel Lunenfeld Research Institute, Mount Sinai Hospital); Brian Ciruna (Department of Molecular Genetics, University of Toronto and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children); Benjamin J. Blencowe (Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto and Centre for Bioinformatics, King's College, University of London)

For more information:

Ben Blencowe and John Calarco
University of Toronto
Banting and Best Department of Medical Research
Department of Molecular Genetics
Terrence Donnelly CCBR
(416) 978-3016 (office)
(416) 471-8075 (cell)
(416) 978-7150 (lab)
b.blencowe@utoronto.ca
john.calarco@utoronto.ca
Other inquiries:
Paul Cantin
Associate Director, Strategic Communications,
University of Toronto Faculty of Medicine
ph: 416-978-2890
paul.cantin@utoronto.ca
Health Starts Here

April Kemick | EurekAlert!
Further information:
http://www.utoronto.ca
http://www.facmed.utoronto.ca

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

Im Focus: Bacteria harness the lotus effect to protect themselves

Biofilms: Researchers find the causes of water-repelling properties

Dental plaque and the viscous brown slime in drainpipes are two familiar examples of bacterial biofilms. Removing such bacterial depositions from surfaces is...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

Innovation 4.0: Shaping a humane fourth industrial revolution

17.05.2017 | Event News

 
Latest News

Supercomputing helps researchers understand Earth's interior

23.05.2017 | Earth Sciences

Study identifies RNA molecule that shields breast cancer stem cells from immune system

23.05.2017 | Life Sciences

Turmoil in sluggish electrons’ existence

23.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>