Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of T researchers identify protein

08.09.2009
Researchers at the University of Toronto have identified a protein which plays a key role in the development of neurons, which could enhance our understanding of how the brain works, and how diseases such as Alzheimer's occur.

U of T graduate student John Calarco, working in the labs of Prof. Ben Blencowe (Donnelly Centre for Cellular and Biomolecular Research, University of Toronto) and Prof. Mei Zhen (Samuel Lunenfeld Research Institute, Mount Sinai Hospital), has identified a protein known as nSR100, which is only found in vertebrate species and which controls a network of "alternative splicing events" that are located in the messages of genes with critical functions in the formation of the nervous system. The findings are published in a paper in the current edition of the journal Cell.

Alternative splicing events greatly expand the diversity of the genetic messages and corresponding proteins produced by genes in vertebrate cells, and this process partially accounts for the evolution of remarkable complexity in organs such as the mammalian brain. Calarco, recipient of a prestigious Alexander Graham Bell Studentship, together with colleagues in the Blencowe Lab, identified nSR100 using computational and experimental methods and then determined its role in the control of alternative splicing in the brain. These studies revealed that nSR100 regulates splicing events in genes that help form neurons.

Collaborator and co-author Brian Ciruna and his colleagues at the the Hospital for Sick Children (SickKids) in Torontofurther demonstrated that nSR100 plays a critical role in the development of the vertebrate nervous system.

"The brain is by far the most complex organ in the human body and understanding how it functions represents one of the foremost challenges of biomedical research. A large number of neurological disorders arise when the development and function of certain neurons is impaired. A major research goal is therefore to identify key genes required for the specification and function of neurons in the brain, and nSR100 represents such a gene," said Prof. Blencowe, principal investigator on the study.

Calarco added that the findings present a new avenue of investigation for researchers. "The study provides intriguing insight into how the evolution of a single protein has contributed to the expansion of brain complexity in vertebrates – including humans.

Further investigation into the complex network of splicing events regulated by nSR100 may uncover important aspects of how neurons normally function and also how they become impaired in neurological diseases like Alzheimer's."

The authors' research is supported by funds from the Canadian Institutes of Health Research, the Ontario Research Fund and Genome Canada through the Ontario Genomics Institute.

Cell Paper Authors:

John A. Calarco (Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto); Simone Superina (Department of Molecular Genetics, University of Toronto and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children); Dave O'Hanlon (Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto); Mathieu Gabut (Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto);Bushra Raj (Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto); Qun Pan (Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto);Ursula Skalska (Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, University of Toronto); Laura Clarke(Department of Molecular Genetics, University of Toronto); Danielle Gelinas (Program in Developmental and Stem Cell Biology, The Hospital for Sick Children);Derek van der Kooy (Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto); Mei Zhen (Department of Molecular Genetics, University of Toronto and Samuel Lunenfeld Research Institute, Mount Sinai Hospital); Brian Ciruna (Department of Molecular Genetics, University of Toronto and Program in Developmental and Stem Cell Biology, The Hospital for Sick Children); Benjamin J. Blencowe (Banting and Best Department of Medical Research, Donnelly Centre for Cellular and Biomolecular Research, Department of Molecular Genetics, University of Toronto and Centre for Bioinformatics, King's College, University of London)

For more information:

Ben Blencowe and John Calarco
University of Toronto
Banting and Best Department of Medical Research
Department of Molecular Genetics
Terrence Donnelly CCBR
(416) 978-3016 (office)
(416) 471-8075 (cell)
(416) 978-7150 (lab)
b.blencowe@utoronto.ca
john.calarco@utoronto.ca
Other inquiries:
Paul Cantin
Associate Director, Strategic Communications,
University of Toronto Faculty of Medicine
ph: 416-978-2890
paul.cantin@utoronto.ca
Health Starts Here

April Kemick | EurekAlert!
Further information:
http://www.utoronto.ca
http://www.facmed.utoronto.ca

More articles from Life Sciences:

nachricht Individual Receptors Caught at Work
19.10.2017 | Julius-Maximilians-Universität Würzburg

nachricht Rapid environmental change makes species more vulnerable to extinction
19.10.2017 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Electrode materials from the microwave oven

19.10.2017 | Materials Sciences

New material for digital memories of the future

19.10.2017 | Materials Sciences

Physics boosts artificial intelligence methods

19.10.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>