Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M researchers solve a molecular mystery in muscle

16.03.2010
The muscle-building abilities of hormones known as insulin-like growth factors (IGFs) are legendary. Just do an online search and you'll find not only scientific papers discussing the effects of IGFs on the cells that give rise to muscle tissue, but also scores of ads touting the purported benefits of IGF supplements for bodybuilding.

But in spite of widespread interest in these potent molecules, key details about how IGFs work on muscle cells have been lacking.

A research by a team led by University of Michigan molecular biologist Cunming Duan has cleared up a longstanding mystery about the workings of IGFs. The team's findings, scheduled to be published online this week in the Proceedings of the National Academy of Sciences, could lead to new treatments for muscle-wasting diseases and new ways of preventing the muscle loss that accompanies aging.

And because IGFs also are implicated in the growth and spread of malignant tumors, the new insights may have implications in cancer biology.

Like other peptide and protein hormones, IGFs work by binding to receptors on the cells they target. The binding then sets off a cascade of reactions that ultimately direct the cell to do something. You might think that a given hormone, binding to a particular receptor, would always elicit the same response from the cell, but that's not what happens in the case of IGF and myoblasts (immature cells that develop into muscle tissue).

During muscle formation, the binding of IGF to its receptor can prompt either of two very different responses in myoblasts, said Duan, a professor in the Department of Molecular, Cellular and Developmental Biology. Some of the cells are stimulated to divide, while others interpret the very same signal as an order to differentiate (become specialized).

"These are opposite and mutually exclusive cellular events—once a muscle cell divides, it can't differentiate, and once it differentiates, it can never divide again," Duan said. How activation of the same receptor by the same hormone can elicit two such distinctly different responses has been one of the most puzzling questions about IGF, but Duan and colleagues have found the answer.

"The myoblasts' response is controlled by oxygen availability," said Duan. When oxygen levels are normal, IGF promotes muscle cell differentiation; when oxygen levels are below normal, IGF promotes muscle cell division. Teasing out the molecular details, the researchers discovered that low oxygen activates an intermediary called the HIF-1 complex, which reprograms the cascade of steps that ultimately controls the cell's response.

The findings not only reveal how muscle cells respond to varying oxygen levels during normal development, but also have implications for human disease, Duan said. "For example, a major reason that muscle atrophy occurs as people get older is that the IGF signal gets weaker. If we can find a way to affect IGF signaling, we may be able to stop or reverse the loss." Although manipulating the oxygen levels in living cells could be difficult, it may be possible to manipulate HIF-1 in ways that would mimic changing oxygen levels.

The work also could help scientists better understand the processes involved in cancer progression and spread. It's known that IGF can promote tumor cell division and survival and also that oxygen levels are often lower in tumor tissue than in normal tissue. Finding the link between IGF activity and oxygen levels may lead to new strategies for cancer treatment.

Duan's coauthors on the paper are former graduate student Hongxia Ren, now a postdoctoral fellow at Columbia University, and Domenico Accili, professor of medicine at Columbia .

The research was funded by the National Institutes of Health, the National Science Foundation and the University of Michigan.

Contact: Nancy Ross-Flanigan
Phone: (734) 647-1853

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: HIF-1 IGF Science TV cell division living cell muscle cells oxygen levels

More articles from Life Sciences:

nachricht Light-driven reaction converts carbon dioxide into fuel
23.02.2017 | Duke University

nachricht Oil and gas wastewater spills alter microbes in West Virginia waters
23.02.2017 | Rutgers University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Organ-on-a-chip mimics heart's biomechanical properties

23.02.2017 | Health and Medicine

Light-driven reaction converts carbon dioxide into fuel

23.02.2017 | Life Sciences

Oil and gas wastewater spills alter microbes in West Virginia waters

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>