Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U-M researchers solve a molecular mystery in muscle

16.03.2010
The muscle-building abilities of hormones known as insulin-like growth factors (IGFs) are legendary. Just do an online search and you'll find not only scientific papers discussing the effects of IGFs on the cells that give rise to muscle tissue, but also scores of ads touting the purported benefits of IGF supplements for bodybuilding.

But in spite of widespread interest in these potent molecules, key details about how IGFs work on muscle cells have been lacking.

A research by a team led by University of Michigan molecular biologist Cunming Duan has cleared up a longstanding mystery about the workings of IGFs. The team's findings, scheduled to be published online this week in the Proceedings of the National Academy of Sciences, could lead to new treatments for muscle-wasting diseases and new ways of preventing the muscle loss that accompanies aging.

And because IGFs also are implicated in the growth and spread of malignant tumors, the new insights may have implications in cancer biology.

Like other peptide and protein hormones, IGFs work by binding to receptors on the cells they target. The binding then sets off a cascade of reactions that ultimately direct the cell to do something. You might think that a given hormone, binding to a particular receptor, would always elicit the same response from the cell, but that's not what happens in the case of IGF and myoblasts (immature cells that develop into muscle tissue).

During muscle formation, the binding of IGF to its receptor can prompt either of two very different responses in myoblasts, said Duan, a professor in the Department of Molecular, Cellular and Developmental Biology. Some of the cells are stimulated to divide, while others interpret the very same signal as an order to differentiate (become specialized).

"These are opposite and mutually exclusive cellular events—once a muscle cell divides, it can't differentiate, and once it differentiates, it can never divide again," Duan said. How activation of the same receptor by the same hormone can elicit two such distinctly different responses has been one of the most puzzling questions about IGF, but Duan and colleagues have found the answer.

"The myoblasts' response is controlled by oxygen availability," said Duan. When oxygen levels are normal, IGF promotes muscle cell differentiation; when oxygen levels are below normal, IGF promotes muscle cell division. Teasing out the molecular details, the researchers discovered that low oxygen activates an intermediary called the HIF-1 complex, which reprograms the cascade of steps that ultimately controls the cell's response.

The findings not only reveal how muscle cells respond to varying oxygen levels during normal development, but also have implications for human disease, Duan said. "For example, a major reason that muscle atrophy occurs as people get older is that the IGF signal gets weaker. If we can find a way to affect IGF signaling, we may be able to stop or reverse the loss." Although manipulating the oxygen levels in living cells could be difficult, it may be possible to manipulate HIF-1 in ways that would mimic changing oxygen levels.

The work also could help scientists better understand the processes involved in cancer progression and spread. It's known that IGF can promote tumor cell division and survival and also that oxygen levels are often lower in tumor tissue than in normal tissue. Finding the link between IGF activity and oxygen levels may lead to new strategies for cancer treatment.

Duan's coauthors on the paper are former graduate student Hongxia Ren, now a postdoctoral fellow at Columbia University, and Domenico Accili, professor of medicine at Columbia .

The research was funded by the National Institutes of Health, the National Science Foundation and the University of Michigan.

Contact: Nancy Ross-Flanigan
Phone: (734) 647-1853

Nancy Ross-Flanigan | EurekAlert!
Further information:
http://www.umich.edu

Further reports about: HIF-1 IGF Science TV cell division living cell muscle cells oxygen levels

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Contacting the molecular world through graphene nanoribbons

19.02.2018 | Materials Sciences

When Proteins Shake Hands

19.02.2018 | Materials Sciences

Cells communicate in a dynamic code

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>