Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers discover gene required to maintain male sex throughout life

21.07.2011
Researchers find that loss of gene Dmrt1 leads to male cells becoming female

University of Minnesota Medical School and College of Biological Sciences researchers have made a key discovery showing that male sex must be maintained throughout life.

The research team, led by Drs. David Zarkower and Vivian Bardwell of the U of M Department of Genetics, Cell Biology and Development, found that removing an important male development gene, called Dmrt1, causes male cells in mouse testis to become female cells.

The findings are published online today in Nature.

In mammals, sex chromosomes (XX in female, XY in male) determine the future sex of the animal during embryonic development by establishing whether the gonads will become testes or ovaries.

"Scientists have long assumed that once the sex determination decision is made in the embryo, it's final," Zarkower said. "We have now discovered that when Dmrt1 is lost in mouse testes – even in adults – many male cells become female cells and the testes show signs of becoming more like ovaries."

Previous research has shown that removing a gene, called Foxl2, in ovaries caused female cells to become male cells and the ovaries to become more like testes. According to Zarkower, the latest U of M research determines that the gonads of both sexes must actively maintain the original sex determination decision throughout the remainder of life.

For the genetic research community this new understanding is a breakthrough. The findings provide new insight into how to turn one cell type into another, a process known as reprogramming, and also show that throughout life, cells in the testis must be actively prevented from transforming into female cells normally found in the ovary.

"This work shows that sex determination in mammals can be surprisingly prone to change, and must be actively maintained throughout an organism's lifetime," said Dr. Susan Haynes, who oversees developmental biology grants at the National Institute of General Medical Sciences of the National Institutes of Health. "These new insights have important implications for our understanding of how to reprogram cells to take on different identities, and may shed light on the origin of some human sex reversal disorders."

The new findings may force the scientific community to reconsider how disorders involving human sex-reversal occur. Some of these disorders may not result from errors in the original sex determination decision in the embryo, but instead may result from failure to maintain that decision later in embryonic development. In addition, because DMRT1 has been associated with human gonadal cancers, the researchers hope their findings will provide another clue into how gonadal cancer develops.

Drs. Clinton Matson and Mark Murphy of the Department of Genetics, Cell Biology and Development, and Dr. Aaron Sarver of the U of M Masonic Cancer Center were instrumental in performing these studies. The research was funded by the National Institutes of Health and the National Science Foundation.

Kelly O'Connor | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht New application for acoustics helps estimate marine life populations
16.01.2018 | University of California - San Diego

nachricht Unexpected environmental source of methane discovered
16.01.2018 | University of Washington Health Sciences/UW Medicine

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

Im Focus: A thermometer for the oceans

Measurement of noble gases in Antarctic ice cores

The oceans are the largest global heat reservoir. As a result of man-made global warming, the temperature in the global climate system increases; around 90% of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Gran Chaco: Biodiversity at High Risk

17.01.2018 | Ecology, The Environment and Conservation

Only an atom thick: Physicists succeed in measuring mechanical properties of 2D monolayer materials

17.01.2018 | Physics and Astronomy

Fraunhofer HHI receives AIS Technology Innovation Award 2018 for 3D Human Body Reconstruction

17.01.2018 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>