Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researchers contribute to global plant database that will expand research on ecosystems and climate change

30.06.2011
A new database of plants’ traits will help scientists around the world learn more about how climate change is affecting ecosystems.

The availability of plant trait data in the unified global database promises to support a paradigm shift in Earth system sciences.

University of Minnesota researchers Peter Reich and Jacek Oleksyn, Department of Forest Resources, and Jeannine Cavender-Bares, Department of Ecology, Evolution, and Behavior, are members of the international collaborative that developed the database, which includes 3 million traits for 69,000 of the world's roughly 300,000 plant species.

The initiative, known as TRY, is hosted at the Max Planck Institute for Biogeochemistry in Jena, Germany, and includes scientists from more than 100 institutions around the world. Among hundreds of scientists, Reich, a resident fellow in the university’s Institute on the Environment, is the leading contributor of data to the database.

The first installment of the database was published this week in the journal Global Change Biology.

“After four years of intensive development, we are proud to present the first release of the global database,” said Jens Kattge, senior scientist at the Max Planck Institute for Biogeochemistry and lead author of the publication. Reich, Cavender-Bares and Oleksyn are among the many co-authors.

Plants’ traits – specific details about how plants look and function – determine how they compete for resources such as light, water and soil nutrients, and where and how fast they can grow. Ultimately, traits determine how plants influence ecosystem properties such as rates of nutrient cycling, water use and carbon dioxide uptake.

A major bottleneck to modeling the effects of climate change at ecosystem and whole-earth scales has been a lack of trait data for sufficiently large numbers of species.

“Global vegetation models commonly classify plant species into a small number of plant functional types, such as grasses or evergreen trees, but these do not capture most of the observed variation in plant traits,” said Christian Wirth, professor of plant ecology at the University of Leipzig, one of the initiators of the project.

In contrast, the new database gives trait information for individual plant species—not just types—around the globe. By using it, scientists now will be able to build more realistic models of terrestrial biodiversity.

Reich says the data and the relationships among traits in the database “will revolutionize the biological underpinnings of Earth systems models, and will help us improve our ability to predict the future carbon cycle and climate change, and suggest mitigation strategies. We, and others, are already incorporating these data into large-scale models of Earth’s biological function. In fact, a new initiative co-funded by the U of M's Institute on the Environment and the Max Planck Institute for Biogeochemistry is aiming to do just that.”

Contacts: Becky Beyers, College of Food, Agricultural and Natural Resource Sciences, bbeyers@umn.edu, (612) 626-5754
Mary Hoff, Institute on the Environment, maryhoff@umn.edu, (612) 626-2670
Jeff Falk, University News Service, jfalk@umn.edu, (612) 626-1720

Jeff Falk | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>