Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

U of M researcher helps unlock 30 new genes responsible for early-onset puberty

02.12.2010
University of Minnesota School of Public Health researcher Ellen Demerath, Ph.D., is among an international group of researchers that has identified 30 new genes responsible for determining the age of sexual maturation in women.

Many of these genes are also known to influence body fatness, obesity, and energy metabolism. Prior to the multi-institutional study, only four genes had been identified as contributing to the process.

The findings, which were reported in Nature Genetics, help to explain why girls who are obese tend to have earlier puberty: some of the same genes are involved in both outcomes. Early menarche, or the first menstrual cycle, is linked to a variety of chronic adulthood diseases, including breast cancer, cardiovascular diseases, and type 2 diabetes.

As a result of these discoveries, Demerath suggests that health care providers and other professionals pay particularly close attention to girls with a high risk of obesity (those who are overweight in childhood or who have a parental history of obesity) and intervene with them, as those girls are also genetically more susceptible to early menarche.

“Early menarche is caused by both genetics and environmental factors,” said Demerath. “We already knew that diet and physical exercise play a role in menarche, but now that we’ve identified more of the specific genes involved, this gives us clues about how to intervene on the process. By showing how hereditary and biological factors contribute to early menarche, we hope to one day allow health care providers to identify girls with increased risk of early menarche, and help them avoid the complications of early-onset puberty.”

In the large-scale, NIH-funded study, researchers from 104 institutions collected data from more than 100,000 women from the United States, Europe, and Australia. This includes women from the Twin Cities area enrolled in the Atherosclerosis Risk in Communities (ARIC) study. Not only were researchers able to identify these new genes, but they also found that many of them play a role in body weight regulation or biological pathways related to fat metabolism. The study findings also suggest that menarche is a result of a complex range of biological processes.

Today, girls are menstruating earlier than ever before. In the mid-1900s, the average age of menarche was 14-15 years. The average age today is 12-13 years.

“We now know that hormone regulation, cell development, and other mechanisms are related to menarche,” said Demerath.

According to Demerath, the next step for researchers is to examine whether some of these genes also influence sexual development in males, whether the genes are related to general growth in size as well as development, the points in the life cycle when the genes are most powerfully expressed, and how environmental factors such as diet and physical activity can modify their effects.

School of Public Health
For more than 60 years, the University of Minnesota School of Public Health has been among the top accredited schools of public health in the nation. With a mission focused on research, teaching, and service, the school attracts nearly $100 million in research funding each year, has more than 100 faculty members and more than 1,300 students, and is engaged in community outreach activities locally, nationally and in dozens of countries worldwide. For more information, visit www.sph.umn.edu.
Emily Jensen
Academic Health Center
612-624-9163
jense888@umn.edu
Kris Stouffer
School of Public Health
612-624-4460
stouffer@umn.edu

Emily Jensen | EurekAlert!
Further information:
http://www.umn.edu

More articles from Life Sciences:

nachricht Toward a 'smart' patch that automatically delivers insulin when needed
18.01.2017 | American Chemical Society

nachricht 127 at one blow...
18.01.2017 | Stiftung Zoologisches Forschungsmuseum Alexander Koenig, Leibniz-Institut für Biodiversität der Tiere

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

A big nano boost for solar cells

18.01.2017 | Power and Electrical Engineering

Glass's off-kilter harmonies

18.01.2017 | Materials Sciences

Toward a 'smart' patch that automatically delivers insulin when needed

18.01.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>