Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Typhoid Fever – A race against time

16.01.2014
The life-threatening disease typhoid fever results from the ongoing battle between the bacterial pathogen Salmonella and the immune cells of the body.

Prof. Dirk Bumann’s research group at the Biozentrum of the University of Basel has now uncovered how the typhoid pathogen repeatedly manages to evade the host’s immune system. Their findings are published in the scientific journal “Cell Host & Microbe”.


Salmonella-infected cells (macrophages in blue, monocytes in turquoise). Dead Salmonella (only yellow), surviving Salmonella (yellow and red).

Illustration: University of Basel

Typhoid fever is a bacterial infection caused by the pathogen Salmonella. The infected host’s immune system detects Salmonella and activates immune cells such as neutrophils and monocytes. These cells infiltrate the infected tissue and enclose the infection to form an abscess. Although most Salmonella bacteria are readily killed by this immune reaction, Dirk Bumann’s group has demonstrated that some escape from the abscess and thus ensure their survival.

Salmonella uses immune cells

Once outside the abscess, the Salmonella bacteria are attacked by other immune cells, the so-called macrophages that produce a less effective immune response. “Salmonella have developed a range of defense strategies to resist macrophage attacks. Many Salmonella are thus able to survive and even to replicate in macrophages,” explains Neil Burton, one of the two first authors. With time, abscesses form around the new infection foci but again some Salmonella bacteria can manage to escape.

“This drives the whole infection process further and makes typhoid fever particularly insidious,” says Nura Schürmann, also a first author of the publication.

A battle on many fronts

The whole disease process is a race between Salmonella and the immune system of the infected organism, in which the battle is fought on many fronts. In this process many Salmonella bacteria are killed and others survive to spread the infection. It is the net balance of the outcomes of these individual Salmonella and immune cell encounters which in the end determines the course of the illness.

Typhoid fever is a life-threatening infection in countries with poor hygiene. Each year, more than 20 million people are infected with this disease. The illness is transmitted by ingesting food or water contaminated with this bacterium. Once inside the intestine, Salmonella crosses the gut mucosa and spreads to other organs such as the spleen and liver. Growing antibiotic resistance makes this illness increasingly difficult to cure.

Understanding what factors enable Salmonella to win many encounters with host cells might provide new strategies in the treatment of typhoid fever. Similar heterogeneous encounters likely determine the fights between the host and many other pathogens. Findings of this study may thus be relevant for a wide range of infectious diseases.

Original Citation
Neil A. Burton, Nura Schürmann, Olivier Casse, Anne K. Steeb, Beatrice Claudi, Janine Zankl, Alexander Schmidt, Dirk Bumann
Disparate Impact of Oxidative Host Defenses Determines the Fate of Salmonella during Systemic Infection in Mice
Cell Host & Microbe, Volume 15, Issue 1, 72-83, 15 January 2014 |
doi: 10.1016/j.chom.2013.12.006
Further Information
Prof. Dr. Dirk Bumann, University of Basel, Biozentrum,
phone: +41 61 267 23 82, Email: dirk.bumann@unibas.ch

Olivia Poisson | Universität Basel
Further information:
http://www.unibas.ch
http://unibas.ch/index.cfm?uuid=8B97DAF7F3F274D35D46A5758BA461CC&type=search&show_long=1&&o_lang_id=2

Further reports about: Biozentrum Salmonella immune cell immune system typhoid typhoid fever

More articles from Life Sciences:

nachricht New Computer Model Could Explain how Simple Molecules Took First Step Toward Life
29.07.2015 | Brookhaven National Laboratory

nachricht Switch for building barrier in roots
29.07.2015 | The University of Tokyo

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

Im Focus: Smarter window materials can control light and energy

Researchers in the Cockrell School of Engineering at The University of Texas at Austin are one step closer to delivering smart windows with a new level of energy efficiency, engineering materials that allow windows to reveal light without transferring heat and, conversely, to block light while allowing heat transmission, as described in two new research papers.

By allowing indoor occupants to more precisely control the energy and sunlight passing through a window, the new materials could significantly reduce costs for...

Im Focus: Simulations lead to design of near-frictionless material

Argonne scientists used Mira to identify and improve a new mechanism for eliminating friction, which fed into the development of a hybrid material that exhibited superlubricity at the macroscale for the first time. Argonne Leadership Computing Facility (ALCF) researchers helped enable the groundbreaking simulations by overcoming a performance bottleneck that doubled the speed of the team's code.

While reviewing the simulation results of a promising new lubricant material, Argonne researcher Sanket Deshmukh stumbled upon a phenomenon that had never been...

Im Focus: NASA satellite camera provides 'EPIC' view of Earth

A NASA camera on the Deep Space Climate Observatory (DSCOVR) satellite has returned its first view of the entire sunlit side of Earth from one million miles away.

The color images of Earth from NASA's Earth Polychromatic Imaging Camera (EPIC) are generated by combining three separate images to create a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

A New Litmus Test for Chaos?

29.07.2015 | Physics and Astronomy

New Computer Model Could Explain how Simple Molecules Took First Step Toward Life

29.07.2015 | Life Sciences

New ERC calls published under Horizon 2020

29.07.2015 | Awards Funding

VideoLinks
B2B-VideoLinks
More VideoLinks >>>