Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Turbo-Packed RNA

05.11.2010
Turbo Reagent Allows Precise Synthesis of tRNA Nucleosides

Ribonucleic acid (RNA) is a biologically important molecule that is very similar to DNA, the blueprint of life. Naturally occurring RNAs, such as transfer RNA (tRNA), contain modified building blocks (“nucleosides”), which are involved in decoding genetic information.

Deazaguanosine nucleosides, in particular, are of significant interest for their antibacterial, antifungal, antiviral, and anticancer activity. In the European Journal of Organic Chemistry, Thomas Carell and his team at Munich's Ludwig Maximilians University (Germany) have now introduced a method to prepare tRNA nucleosides through a novel Turbo-Grignard-based approach with an unprecedented level of control from a common intermediate.

Because of the biological importance of deazaguanosines, a reliable method for their preparation is desirable. In this way, scientists can easily study their functions and the role they play in the treatment of diseases. One of the problems for synthetic chemists, however, is that these compounds often contain various reactive groups at several locations within the molecule. Precise control over the reactivity at a single position can therefore be difficult. Thus, the development of a site-specific reagent is required.

For their synthesis, the authors opted to use the versatile Turbo-Grignard reagent. The “normal” Grignard reagent is used by chemists to introduce a group into a molecule at a reactive site; it consists of the group to be added complexed to the metal magnesium. The Turbo-Grignard is also complexed to a lithium salt, which generally allows reactions to be performed under mild conditions – an important advantage when dealing with biologically relevant compounds.

In their article, the team shows that the Turbo-Grignard reagent has a specific point of attack and that it can be used in the presence of other reactive groups. Importantly, an adjacent group that proved problematic under different conditions was found to be completely unreactive to the turbo reagent, thereby allowing efficient synthesis of the desired nucleosides; the same reaction performed with the “normal” Grignard reagent resulted in decomposition of the desired products. The fact that other reactive groups in the molecule remain untouched facilitates the synthesis of deazaguanosine-derived tRNA nucleosides, which should enable detailed biochemical investigation of their functions in vivo and help in the treatment of genetic diseases.

Author: Thomas Carell, Ludwig-Maximilians-Universität München (Germany), http://www.cup.uni-muenchen.de/oc/carell/

Title: Efficient Synthesis of Deazaguanosine-Derived tRNA Nucleosides PreQ0, PreQ1, and Archaeosine Using the Turbo-Grignard Method

European Journal of Organic Chemistry, Permalink to the article: http://dx.doi.org/10.1002/ejoc.201000987

Thomas Carell | Wiley-VCH
Further information:
http://www.cup.uni-muenchen.de/oc/carell/
http://www.wiley-vch.de

More articles from Life Sciences:

nachricht A Map of the Cell’s Power Station
18.08.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

nachricht On the way to developing a new active ingredient against chronic infections
18.08.2017 | Deutsches Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

A Map of the Cell’s Power Station

18.08.2017 | Life Sciences

Engineering team images tiny quasicrystals as they form

18.08.2017 | Physics and Astronomy

Researchers printed graphene-like materials with inkjet

18.08.2017 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>