Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Toxoplasmosis: The Strain Explains Severity of Infection

Providing clues into why the severity of a common parasitic infection can vary greatly from person to person, a new Johns Hopkins study shows that each one of three strains of the cat-borne parasite Toxoplasma gondii sets off a unique reaction in the nerve cells it invades.

Past research suggests that the parasite, estimated to infect 25 percent of people worldwide, can trigger or exacerbate psychotic symptoms and schizophrenia in genetically predisposed people.

The findings of the new study, published in the March issue of the journal Infection and Immunity, help explain why the infection causes serious disease in some but not in others and clarify its role in psychiatric disorders, the researchers say.

“We already know that toxoplasmosis can play a role in some psychiatric disorders, but up until now we didn’t know why. Working with human nerve cells, our study shows the exact alterations triggered by each strain that can eventually manifest themselves as symptoms,” says senior investigator Robert Yolken, M.D., a neurovirologist at Johns Hopkins Children’s Center.

The researchers injected human nerve cells with the three most common toxoplasma strains, each of which caused a different pattern of gene expression. One of the most basic functions in all living organisms, gene expression occurs when a gene is switched on to release a substance that tells cells what to do or not do, determining the cells’ biologic behavior. Gene expression can be turned on and off, stepped up or down by various factors, including viral and bacterial invasions.

Cells infected with toxoplasma type I — the most virulent strain in mice — had the greatest impact on gene expression, altering more than 1,000 genes, 28 of them linked to brain development and central nervous system function and 31 others to nerve impulse and signaling.

Cells injected with the less virulent types II and III had low and moderate levels of gene expression. Infection with toxoplasma type II affected 78 genes, some of which were related to growth, certain hormones and circadian rhythm, while type III altered 344 genes, some of which were linked to metabolism.

A handful of genes were affected by all three strains, notably a gene called VIPR2 that regulates neurotransmitters and nerve signaling and may play a role in schizophrenia, the researchers say.

If these findings are confirmed in clinical studies with people, they could help physicians predict the severity of an infection by strain type and tailor treatments accordingly, the researchers say.

“While disease course in humans is often more unpredictable than what we see in the controlled setting of a lab, these results give us a fascinating first look into the distinct genetic cascade of reactions that each strain can unlock and may one day serve as the basis for individualized treatment of symptomatic infections,” says lead investigator Jianchun Xiao, Ph.D., a neurovirologist at the Stanley Division of Developmental Neurovirology at Hopkins.

A 2008 study by Yolken and colleagues revealed that toxoplasma infection increases the risk for schizophrenia and could precipitate the disease in genetically predisposed people, a classic example of how genes and environment come together in the development of disease.

Most infections with toxoplasma occur early in life following exposure to the parasite from cat feces or undercooked beef or pork. Farm animals and rodents also get infected, but the parasite reaches full sexual reproduction only in cats. Infections rarely cause symptoms, but the parasite remains in the body and can reactivate after lying dormant for years.

Co-investigators on the study included Lorraine Jones-Brando, M.D., and C. Conover Talbot Jr., both of Hopkins. The research was funded by the Stanley Medical Research Institute.

Founded in 1912 as the children's hospital of the Johns Hopkins Medical Institutions, the Johns Hopkins Children's Center offers one of the most comprehensive pediatric medical programs in the country, with more than 92,000 patient visits and nearly 9,000 admissions each year. Hopkins Children’s is consistently ranked among the top children's hospitals in the nation. Hopkins Children’s is Maryland's largest children’s hospital and the only state-designated Trauma Service and Burn Unit for pediatric patients. It has recognized Centers of Excellence in dozens of pediatric subspecialties, including allergy, cardiology, cystic fibrosis, gastroenterology, nephrology, neurology, neurosurgery, oncology, pulmonary, and transplant. Hopkins Children's will celebrate its 100th anniversary and move to a new home in 2012. For more information, please visit

Ekaterina Pesheva | EurekAlert!
Further information:

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>