Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Toxoplasmosis: The Strain Explains Severity of Infection

15.03.2011
Providing clues into why the severity of a common parasitic infection can vary greatly from person to person, a new Johns Hopkins study shows that each one of three strains of the cat-borne parasite Toxoplasma gondii sets off a unique reaction in the nerve cells it invades.

Past research suggests that the parasite, estimated to infect 25 percent of people worldwide, can trigger or exacerbate psychotic symptoms and schizophrenia in genetically predisposed people.

The findings of the new study, published in the March issue of the journal Infection and Immunity, help explain why the infection causes serious disease in some but not in others and clarify its role in psychiatric disorders, the researchers say.

“We already know that toxoplasmosis can play a role in some psychiatric disorders, but up until now we didn’t know why. Working with human nerve cells, our study shows the exact alterations triggered by each strain that can eventually manifest themselves as symptoms,” says senior investigator Robert Yolken, M.D., a neurovirologist at Johns Hopkins Children’s Center.

The researchers injected human nerve cells with the three most common toxoplasma strains, each of which caused a different pattern of gene expression. One of the most basic functions in all living organisms, gene expression occurs when a gene is switched on to release a substance that tells cells what to do or not do, determining the cells’ biologic behavior. Gene expression can be turned on and off, stepped up or down by various factors, including viral and bacterial invasions.

Cells infected with toxoplasma type I — the most virulent strain in mice — had the greatest impact on gene expression, altering more than 1,000 genes, 28 of them linked to brain development and central nervous system function and 31 others to nerve impulse and signaling.

Cells injected with the less virulent types II and III had low and moderate levels of gene expression. Infection with toxoplasma type II affected 78 genes, some of which were related to growth, certain hormones and circadian rhythm, while type III altered 344 genes, some of which were linked to metabolism.

A handful of genes were affected by all three strains, notably a gene called VIPR2 that regulates neurotransmitters and nerve signaling and may play a role in schizophrenia, the researchers say.

If these findings are confirmed in clinical studies with people, they could help physicians predict the severity of an infection by strain type and tailor treatments accordingly, the researchers say.

“While disease course in humans is often more unpredictable than what we see in the controlled setting of a lab, these results give us a fascinating first look into the distinct genetic cascade of reactions that each strain can unlock and may one day serve as the basis for individualized treatment of symptomatic infections,” says lead investigator Jianchun Xiao, Ph.D., a neurovirologist at the Stanley Division of Developmental Neurovirology at Hopkins.

A 2008 study by Yolken and colleagues revealed that toxoplasma infection increases the risk for schizophrenia and could precipitate the disease in genetically predisposed people, a classic example of how genes and environment come together in the development of disease.

Most infections with toxoplasma occur early in life following exposure to the parasite from cat feces or undercooked beef or pork. Farm animals and rodents also get infected, but the parasite reaches full sexual reproduction only in cats. Infections rarely cause symptoms, but the parasite remains in the body and can reactivate after lying dormant for years.

Co-investigators on the study included Lorraine Jones-Brando, M.D., and C. Conover Talbot Jr., both of Hopkins. The research was funded by the Stanley Medical Research Institute.

Founded in 1912 as the children's hospital of the Johns Hopkins Medical Institutions, the Johns Hopkins Children's Center offers one of the most comprehensive pediatric medical programs in the country, with more than 92,000 patient visits and nearly 9,000 admissions each year. Hopkins Children’s is consistently ranked among the top children's hospitals in the nation. Hopkins Children’s is Maryland's largest children’s hospital and the only state-designated Trauma Service and Burn Unit for pediatric patients. It has recognized Centers of Excellence in dozens of pediatric subspecialties, including allergy, cardiology, cystic fibrosis, gastroenterology, nephrology, neurology, neurosurgery, oncology, pulmonary, and transplant. Hopkins Children's will celebrate its 100th anniversary and move to a new home in 2012. For more information, please visit www.hopkinschildrens.org

Ekaterina Pesheva | EurekAlert!
Further information:
http://www.hopkinschildrens.org
http://www.jhmi.edu

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>