Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Tiny Protein Provokes Healthy Bonding Between Cells

27.11.2008
In human relationships, a certain “spark” often governs whether we prefer one person to another, and critical first impressions can occur within seconds. A team lead by Johns Hopkins researchers has found that cell-to-cell “friendships” operate in much the same way and that dysfunctional bonding is linked to the spread of cancer.

The research was published in the Nov. 18 early online edition of the Proceedings of the National Academies of Sciences and appears in the journal’s Nov. 25 print edition.

“Bonding between cells has important health implications,” said the study’s senior author, Denis Wirtz, a professor of chemical and biomolecular engineering in the Whiting School of Engineering at Johns Hopkins. “When cancer cells break free from their neighbors, they can spread the disease through the body. If we can learn more about this process, we may find new ways to keep cancer in check.”

Toward that goal, Wirtz, who also is associate director of the Johns Hopkins Institute for NanoBioTechnology, led a multi-institution team that focused on alpha-catenin, a small protein that floats in the cytoplasm, the gel-like material that surrounds the nucleus inside a cell. Alpha-catenin allows cells to recognize neighboring cells as “friends” almost immediately, leading to the creation of many strong bonds that are hard to break. However, cancer cells, including those found in diffuse gastric cancer and lung cancer, possess dysfunctional alpha-catenin and form very weak bonds with their neighbors. This allows them to break free from cell masses and spread cancer throughout the body.

To better understand these bonding characteristics, Wirtz and his colleagues used a technique called atomic force microscopy to study single cells with and without functioning alpha-catenin. This technique records tiny forces, measured in nanoNewtons, that cells exert upon one another.

Wirtz’s team discovered that normal cells with properly functioning alpha-catenin formed bonds that were four times more stable than those without functional alpha-catenin, and these first bonds formed in less than 1 millisecond. The longer the cells remained in contact with one another, the more numerous and stronger these bonds became. The connections between these cells resembled those that occur with a popular type of fastener material. “This accelerated formation of additional bonds between neighboring cells was akin to the ‘Velcro’ effect,” Wirtz said.

In contrast, cells without functional alpha-catenin formed weak bonds from the onset. Also, even as these cells remained in contact, bonding strengths continued to diminish. Wirtz suggested that if scientists could figure out a way to repair or replace the alpha-catenin dysfunction found in some cancer cells, it could lead to a therapy that thwarts the spread of cancer.

The research team members included Sean Sun, a Johns Hopkins associate professor of mechanical engineering; Saumendra Bajpai, a graduate student in the Johns Hopkins Department of Chemical and Biomolecular Engineering; Gianpaolo Suriano, Joana Figueiredo and Joana Correia, all affiliated with the Institute of Molecular Pathology and Immunology of the University of Porto, Portugal; and Gregory Longmore and Yunfeung Feng of the departments of Medicine and Cell Biology, Washington University of St. Louis.

This work was supported by grants from the American Heart Association and the National Institutes of Health.

Color image of Denis Wirtz available; contact Mary Spiro.

Related links:
Link to the online journal article:
http://www.pnas.org/content/early/2008/11/18/0806783105.full.pdf+html
Denis Wirtz’s Lab Page: http://www.jhu.edu/chembe/wirtz/
Johns Hopkins Institute for NanoBioTechnology: http://inbt.jhu.edu

Mary Spiro | Newswise Science News
Further information:
http://www.jhu.edu

More articles from Life Sciences:

nachricht How brains surrender to sleep
23.06.2017 | IMP - Forschungsinstitut für Molekulare Pathologie GmbH

nachricht A new technique isolates neuronal activity during memory consolidation
22.06.2017 | Spanish National Research Council (CSIC)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

Im Focus: Scientists develop molecular thermometer for contactless measurement using infrared light

Temperature measurements possible even on the smallest scale / Molecular ruby for use in material sciences, biology, and medicine

Chemists at Johannes Gutenberg University Mainz (JGU) in cooperation with researchers of the German Federal Institute for Materials Research and Testing (BAM)...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Quantum thermometer or optical refrigerator?

23.06.2017 | Physics and Astronomy

A 100-year-old physics problem has been solved at EPFL

23.06.2017 | Physics and Astronomy

Equipping form with function

23.06.2017 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>