Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For the first time, researchers identify and isolate adult mammary stem cells in mice

31.08.2010
Research implications include breast tissue regeneration and new cancer drug targets

For the first time, researchers at Fred Hutchinson Cancer Research Center have identified and isolated adult mammary stem cells in mice.

Long-term implications of this research may include the use of such cells to regenerate breast tissue, provide a better understanding of the role of adult stem cells in breast cancer development, and develop potential new targets for anti-cancer drugs.

The findings, by Larry Rohrschneider, Ph.D., a member of the Basic Sciences Division at the Hutchinson Center, and Lixia Bai, M.D., Ph.D., a research associate in his lab, are published in the Sept. 1 issue of Genes & Development.

Using a genetically modified mouse model, the researchers tagged stem cells with green fluorescent protein (GFP), which exhibits bright green fluorescence during gene expression and can be easily seen under a microscope. GFP expression is controlled by the promoter of a newly identified gene, specifically expressed in stem cells, called s-SHIP.

“Until now, we have not been able to identify stem cells in mammary tissue. They have never been detected before with such specificity. It is extraordinary. You can see these green stem cells under the microscope in their pure, natural state,” said Rohrschneider, who has filed a patent on the s-SHIP promoter-GFP-labeling technology.

Previous systems for isolating stem cells have relied on a variety of biomarkers, none of which have yielded a pure stem cell population. This limitation has prohibited accurate gene-expression analysis of such cells.

The researchers demonstrated the presence of active green stem cells at crucial stages of mammary development, such as puberty and pregnancy. During quiescent stages of development, however, the cells did not "light up."

Such stem cells represent a new alternative to induced pluripotent stem cells, or genetically altered stem cells, for various medical applications.

For example, by isolating the pure green mammary cells from donor female transgenic mice, the researchers have demonstrated the regenerative ability of these cells by transplanting them into the mammary fat tissue of recipient mice whose own mammary epithelium has been removed.

"We have found that those transplanted green stem cells can generate new mammary tissue and this tissue can produce milk, just like normal mammary epithelial cells," said co-author Bai. "Identification of the exact stem cell and its location is the first critical and fundamental step toward understanding the regulatory mechanisms of these important cells."

In addition to potential clinical applications regarding tissue regeneration, the researchers see these isolated stem cells as a window to better understanding how normal stem cells can become cancer stem cells, which are hypothesized to exist in tumors.

"Our belief right now is that perhaps the most aggressive tumors may be coming from the malignant transformation of stem cells in healthy tissue," Rohrschneider said. "This new technology offers a unified model for identifying normal and cancer stem cells."

Cancer stem cells are thought to be responsible for tumor initiation, growth, metastasis, therapy resistance and disease relapse.

"Because stem cells are critical for both normal tissue development and cancer development, exploring how they are regulated in normal development will help us to better understand how they are transformed into breast cancer cells," Bai said. "By searching for new methods to effectively and specifically target cancer stem cells, we hope we can cure breast cancer someday." she said.

The National Institutes of Health, the National Cancer Institute, the Hutchinson Center and financial support from anonymous donors supported this work.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. www.fhcrc.org

Photo available upon request: A color photo of GFP-positive (green) mammary stem cells in puberty mammary tissue is available upon request.

Kristen Woodward | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht Topologische Quantenchemie
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

nachricht Topological Quantum Chemistry
21.07.2017 | Max-Planck-Institut für Chemische Physik fester Stoffe

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Closing the Sustainability Circle: Protection of Food with Biobased Materials

21.07.2017 | Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

 
Latest News

NASA looks to solar eclipse to help understand Earth's energy system

21.07.2017 | Earth Sciences

Stanford researchers develop a new type of soft, growing robot

21.07.2017 | Power and Electrical Engineering

Vortex photons from electrons in circular motion

21.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>