Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For the first time, researchers identify and isolate adult mammary stem cells in mice

31.08.2010
Research implications include breast tissue regeneration and new cancer drug targets

For the first time, researchers at Fred Hutchinson Cancer Research Center have identified and isolated adult mammary stem cells in mice.

Long-term implications of this research may include the use of such cells to regenerate breast tissue, provide a better understanding of the role of adult stem cells in breast cancer development, and develop potential new targets for anti-cancer drugs.

The findings, by Larry Rohrschneider, Ph.D., a member of the Basic Sciences Division at the Hutchinson Center, and Lixia Bai, M.D., Ph.D., a research associate in his lab, are published in the Sept. 1 issue of Genes & Development.

Using a genetically modified mouse model, the researchers tagged stem cells with green fluorescent protein (GFP), which exhibits bright green fluorescence during gene expression and can be easily seen under a microscope. GFP expression is controlled by the promoter of a newly identified gene, specifically expressed in stem cells, called s-SHIP.

“Until now, we have not been able to identify stem cells in mammary tissue. They have never been detected before with such specificity. It is extraordinary. You can see these green stem cells under the microscope in their pure, natural state,” said Rohrschneider, who has filed a patent on the s-SHIP promoter-GFP-labeling technology.

Previous systems for isolating stem cells have relied on a variety of biomarkers, none of which have yielded a pure stem cell population. This limitation has prohibited accurate gene-expression analysis of such cells.

The researchers demonstrated the presence of active green stem cells at crucial stages of mammary development, such as puberty and pregnancy. During quiescent stages of development, however, the cells did not "light up."

Such stem cells represent a new alternative to induced pluripotent stem cells, or genetically altered stem cells, for various medical applications.

For example, by isolating the pure green mammary cells from donor female transgenic mice, the researchers have demonstrated the regenerative ability of these cells by transplanting them into the mammary fat tissue of recipient mice whose own mammary epithelium has been removed.

"We have found that those transplanted green stem cells can generate new mammary tissue and this tissue can produce milk, just like normal mammary epithelial cells," said co-author Bai. "Identification of the exact stem cell and its location is the first critical and fundamental step toward understanding the regulatory mechanisms of these important cells."

In addition to potential clinical applications regarding tissue regeneration, the researchers see these isolated stem cells as a window to better understanding how normal stem cells can become cancer stem cells, which are hypothesized to exist in tumors.

"Our belief right now is that perhaps the most aggressive tumors may be coming from the malignant transformation of stem cells in healthy tissue," Rohrschneider said. "This new technology offers a unified model for identifying normal and cancer stem cells."

Cancer stem cells are thought to be responsible for tumor initiation, growth, metastasis, therapy resistance and disease relapse.

"Because stem cells are critical for both normal tissue development and cancer development, exploring how they are regulated in normal development will help us to better understand how they are transformed into breast cancer cells," Bai said. "By searching for new methods to effectively and specifically target cancer stem cells, we hope we can cure breast cancer someday." she said.

The National Institutes of Health, the National Cancer Institute, the Hutchinson Center and financial support from anonymous donors supported this work.

At Fred Hutchinson Cancer Research Center, our interdisciplinary teams of world-renowned scientists and humanitarians work together to prevent, diagnose and treat cancer, HIV/AIDS and other diseases. Our researchers, including three Nobel laureates, bring a relentless pursuit and passion for health, knowledge and hope to their work and to the world. www.fhcrc.org

Photo available upon request: A color photo of GFP-positive (green) mammary stem cells in puberty mammary tissue is available upon request.

Kristen Woodward | EurekAlert!
Further information:
http://www.fhcrc.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>