Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For first time atomic changes in a molecule during a chemical reaction photographed

03.06.2013
Taking an image of an individual molecule while it undergoes a chemical reaction has been deemed one of the holy grails of chemistry.

Scientists at the University of Berkeley and the University of the Basque Country (UPV-EHU) have managed, for the very first time, to take direct, single-bond-resolved images of individual molecules just before and immediately after a complex organic reaction. The images enable appreciating the processes of the rupture and creation of links between the atoms making up a molecule.

The article, entitled Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions, appears today, the 30 of May, in the online Science Express as an outstanding research work and will be published in the print edition of Science in the middle of June. The authors are the teams of Felix Fischer (Department of Chemistry at Berkeley), Michael Crommie (Department of Physics at the same university) and Ángel Rubio (Professor at the UPV/EHU and researcher at the CSIC-UPV/EHU Centre for the Physics of Materials and at the Donostia International Physics Center).

The lead author of the article is Mr. Dimas Oteyza, who has just been reincorporated into the CSIC-UPV/EHU Centre for the Physics of Materials after his postdoctoral term in Berkeley.

Organic chemical reactions are, in general, fundamental processes that underlie all biology, as well as highly important industrial processes, such as the production of liquid fuel. The structural models of molecules that we have traditionally relied on to understand these processes come from indirect measurements averaged over an enormous number of molecules (in the order of 1020) as well as from theoretical calculations. Nobody has ever before taken direct, single-bond-resolved images of individual molecules right before and immediately after a complex organic reaction.

“The importance of our discovery is that we were able to image the detailed microscopic structures that a molecule can transform into on a surface, thus allowing us to directly determine the microscopic atomic motions that underlie these chemical transformations”, explained Ángel Rubio. More specifically, researchers were able to record highly resolved images of an oligo-enediyne (a simple molecule composed of three benzene rings linked by carbon atoms) deposited on a flat gold surface. The technique used is called non-contact Atomic Force Microscopy (nc-AFM), based on an instrument with an extraordinarily sensitive tactile probe. This AFM uses a very fine needle that can sense even the smallest atomic-scale bumps on a surface in much the same way that you would use the tip of your fingers to read/feel a word written in Braille. Given that the oligo-enediyne molecules studied are so small (~10–9 m) the probe tip of this instrument was configured to consist of only a single oxygen atom. This arises from a single carbon monoxide (CO) molecule adsorbed onto the AFM microscope tip and acting as an “atomic finger” in tactile reading.”

By moving this “atomic finger” back and forth along the surface they obtained height profiles corresponding to the precise positions of atoms and chemical bonds of the oligo-enediyne molecules studied. Recent advances in this microscopy technique have made it so precise that we can even distinguish the bond order between carbon atoms (single or double or triple bonds). On heating the surface supporting our molecules, they induced a chemical reaction that is closely related to “cyclisations”. Cyclisations, discovered by Berkeley Professor Bergman in the early 1970s, cause carbon atoms linked in chains (aromatic rings) to “fold up” into closed-ring formations. “The height profiles we recorded after the molecules react clearly show how new chemical bonds are formed and how atoms within the molecules rearrange to form new structures”, explained Dimas Oteyza. The results have been interpreted and analysed microscopically thanks to simulations carried out by Mr Rubio’s team.

Apart from achieving surprising visual confirmation of the microscopic mechanisms underlying theoretically predicted organic chemical reactions, this work has relevance in the manufacture of new, high-precision customised materials and electronic apparatus at a nanometric scale.

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Life Sciences:

nachricht Meadows beat out shrubs when it comes to storing carbon
23.11.2017 | Norwegian University of Science and Technology

nachricht Migrating Cells: Folds in the cell membrane supply material for necessary blebs
23.11.2017 | Westfälische Wilhelms-Universität Münster

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Frictional Heat Powers Hydrothermal Activity on Enceladus

Computer simulation shows how the icy moon heats water in a porous rock core

Heat from the friction of rocks caused by tidal forces could be the “engine” for the hydrothermal activity on Saturn's moon Enceladus. This presupposes that...

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Underwater acoustic localization of marine mammals and vehicles

23.11.2017 | Information Technology

Enhancing the quantum sensing capabilities of diamond

23.11.2017 | Physics and Astronomy

Meadows beat out shrubs when it comes to storing carbon

23.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>