Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

For first time atomic changes in a molecule during a chemical reaction photographed

03.06.2013
Taking an image of an individual molecule while it undergoes a chemical reaction has been deemed one of the holy grails of chemistry.

Scientists at the University of Berkeley and the University of the Basque Country (UPV-EHU) have managed, for the very first time, to take direct, single-bond-resolved images of individual molecules just before and immediately after a complex organic reaction. The images enable appreciating the processes of the rupture and creation of links between the atoms making up a molecule.

The article, entitled Direct Imaging of Covalent Bond Structure in Single-Molecule Chemical Reactions, appears today, the 30 of May, in the online Science Express as an outstanding research work and will be published in the print edition of Science in the middle of June. The authors are the teams of Felix Fischer (Department of Chemistry at Berkeley), Michael Crommie (Department of Physics at the same university) and Ángel Rubio (Professor at the UPV/EHU and researcher at the CSIC-UPV/EHU Centre for the Physics of Materials and at the Donostia International Physics Center).

The lead author of the article is Mr. Dimas Oteyza, who has just been reincorporated into the CSIC-UPV/EHU Centre for the Physics of Materials after his postdoctoral term in Berkeley.

Organic chemical reactions are, in general, fundamental processes that underlie all biology, as well as highly important industrial processes, such as the production of liquid fuel. The structural models of molecules that we have traditionally relied on to understand these processes come from indirect measurements averaged over an enormous number of molecules (in the order of 1020) as well as from theoretical calculations. Nobody has ever before taken direct, single-bond-resolved images of individual molecules right before and immediately after a complex organic reaction.

“The importance of our discovery is that we were able to image the detailed microscopic structures that a molecule can transform into on a surface, thus allowing us to directly determine the microscopic atomic motions that underlie these chemical transformations”, explained Ángel Rubio. More specifically, researchers were able to record highly resolved images of an oligo-enediyne (a simple molecule composed of three benzene rings linked by carbon atoms) deposited on a flat gold surface. The technique used is called non-contact Atomic Force Microscopy (nc-AFM), based on an instrument with an extraordinarily sensitive tactile probe. This AFM uses a very fine needle that can sense even the smallest atomic-scale bumps on a surface in much the same way that you would use the tip of your fingers to read/feel a word written in Braille. Given that the oligo-enediyne molecules studied are so small (~10–9 m) the probe tip of this instrument was configured to consist of only a single oxygen atom. This arises from a single carbon monoxide (CO) molecule adsorbed onto the AFM microscope tip and acting as an “atomic finger” in tactile reading.”

By moving this “atomic finger” back and forth along the surface they obtained height profiles corresponding to the precise positions of atoms and chemical bonds of the oligo-enediyne molecules studied. Recent advances in this microscopy technique have made it so precise that we can even distinguish the bond order between carbon atoms (single or double or triple bonds). On heating the surface supporting our molecules, they induced a chemical reaction that is closely related to “cyclisations”. Cyclisations, discovered by Berkeley Professor Bergman in the early 1970s, cause carbon atoms linked in chains (aromatic rings) to “fold up” into closed-ring formations. “The height profiles we recorded after the molecules react clearly show how new chemical bonds are formed and how atoms within the molecules rearrange to form new structures”, explained Dimas Oteyza. The results have been interpreted and analysed microscopically thanks to simulations carried out by Mr Rubio’s team.

Apart from achieving surprising visual confirmation of the microscopic mechanisms underlying theoretically predicted organic chemical reactions, this work has relevance in the manufacture of new, high-precision customised materials and electronic apparatus at a nanometric scale.

Irati Kortabitarte | EurekAlert!
Further information:
http://www.elhuyar.com

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>