Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three-banded panther worm debuts as a new model in the study of regeneration

25.04.2014

Closely resembling plump grains of wild rice set in motion, the three-banded panther worms swimming in disposable containers in Whitehead Institute Member Peter Reddien's lab hardly seem like the next big thing in regeneration.

And yet, these little-studied organisms possess the ability to regenerate any part of their bodies and are amenable to molecular studies in the lab, making them a valuable addition to a field keen on understanding how mechanisms controlling regeneration have evolved over millennia and how they might be activated in humans.


The lab of Whitehead Institute Member Peter Reddien is introducing the scientific community to the three-banded panther worm (Hofstenia miamia), a small organism with the ability to regenerate any missing body part. As a model, Hofstenia could help further our understanding of regeneration, how its mechanisms have evolved over millennia, and what limits regeneration in other animals, including humans. Intriguingly, Hofstenia and the planarian Schmidtea mediterranea -- long the mainstay of Reddien's research -- rely on similar molecular pathways to control regeneration despite having evolved separately over the course of roughly 550 million years.

Credit: Kathleen Mazza and Mansi Srivastava/Whitehead Institute

Four years ago, postdoctoral researcher Mansi Srivastava and Reddien, collected these intriguing animals swimming among submerged mangrove leaves and other aquatic detritus in a chilly Bermudan pond. Known scientifically as Hofstenia miamia, the worm earned its common name from the three cream-colored stripes running across its body as well as its voracious appetite for live prey.

Found in the Caribbean, Bahamas, Bermuda, and even as far away as Japan and the Red Sea, the worms were reported to be endowed with regenerative capabilities. In the 1960s, one scientist described the fact that three-banded panther worms could regrow a severed head, although no additional reports followed.

"It was a big risk for us—it was not a project where you knew it was going to work from the beginning," says Reddien, who is also an associate professor of biology at MIT and a Howard Hughes Medical Institute (HHMI) Investigator. "I had no idea how successful we'd be with culturing the animals or how successful the methods for development would be. There are all kinds of ways we could've failed on this one, but it was fun. It's the kind of science that has an adventurous spirit to it. And the organism is an even better model organism than we could have hoped for."

Reddien and Srivastava present their new model to the scientific community in the May 19th issue of the journal Current Biology.

Once the worms arrived in their new home in Cambridge, the first test was to acclimate them to lab life and determine their needs for survival. Initially, the worms were dying. The salinity of their water was off, even though it matched the pond where they were found. Hofstenia also rejected the liver that is the dietary mainstay for Reddien's other model of regeneration, the planarian (Schmidtea mediterranea). The three-banded panther worms shrank in size and some resorted to cannibalism.

Eventually, the water quality was fixed and a preferred food source was identified: sea monkeys, also known as brine shrimp. Now the worms are thriving and laying numerous eggs, enough to create an ample supply of animals for experiments.

Through a series of dissections, Reddien and Srivastava established that Hofstenia not only regenerate their heads, but, like planarians, are also able to regrow any body part. The scientists then documented the worm's transcriptome—a list of all of the genes that are transcribed in the animal—and established that RNA interference (RNAi) could be used in this animal to inhibit specific genes and unlock the molecular functions that allow regeneration.

With these tools in hand, they determined that in Hofstenia, as in planarians, Wnt signaling controls regeneration along the anterior-posterior (head-tail) axis and Bmp-Admp signaling controls regeneration along the dorsal-ventral (back-belly) axis.

If Hofstenia and planarians were phylogenetically close, such similarities would not be surprising. But after analyzing the Hofstenia transcriptome, the team determined that the three-banded panther worm and planarians are only very distantly related, a view that had been proposed based on analyses with sequences from a small number of genes.

"I find that there is no evidence, even with this large dataset, for Hofstenia to be classified with planarians, which means the last common ancestor that these two species shared existed 550 million years ago. This is the common ancestor that we, humans, also share with these species," says Srivastava, who has a background in evolutionary developmental biology and authored the Current Biology article. "The cool thing is that this raises the question of whether our common ancestor used these pathways—Wnt and Bmp signaling—to regenerate or not."

###

This work is supported by the Jane Coffin Childs Memorial Fund, Human Frontier Science Program, and the Keck Foundation.

Written by Nicole Giese Rura

Peter Reddien's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Investigator and an Associate Professor of Biology at the Massachusetts Institute of Technology.

Full Citation:

"Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling"

Current Biology, May 19, 2014.

Mansi Srivastava (1), Kathleen L. Mazza-Curll (1), Josien C. van Wolfswinkel (1), and Peter W. Reddien (1).

1. Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.

Matt Fearer | Eurek Alert!

Further reports about: Biology Biomedical Medical Technology Wnt ancestor animals genes humans organism species

More articles from Life Sciences:

nachricht New technique unveils 'matrix' inside tissues and tumors
29.06.2017 | University of Copenhagen The Faculty of Health and Medical Sciences

nachricht Designed proteins to treat muscular dystrophy
29.06.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making Waves

Computer scientists use wave packet theory to develop realistic, detailed water wave simulations in real time. Their results will be presented at this year’s SIGGRAPH conference.

Think about the last time you were at a lake, river, or the ocean. Remember the ripples of the water, the waves crashing against the rocks, the wake following...

Im Focus: Can we see monkeys from space? Emerging technologies to map biodiversity

An international team of scientists has proposed a new multi-disciplinary approach in which an array of new technologies will allow us to map biodiversity and the risks that wildlife is facing at the scale of whole landscapes. The findings are published in Nature Ecology and Evolution. This international research is led by the Kunming Institute of Zoology from China, University of East Anglia, University of Leicester and the Leibniz Institute for Zoo and Wildlife Research.

Using a combination of satellite and ground data, the team proposes that it is now possible to map biodiversity with an accuracy that has not been previously...

Im Focus: Climate satellite: Tracking methane with robust laser technology

Heatwaves in the Arctic, longer periods of vegetation in Europe, severe floods in West Africa – starting in 2021, scientists want to explore the emissions of the greenhouse gas methane with the German-French satellite MERLIN. This is made possible by a new robust laser system of the Fraunhofer Institute for Laser Technology ILT in Aachen, which achieves unprecedented measurement accuracy.

Methane is primarily the result of the decomposition of organic matter. The gas has a 25 times greater warming potential than carbon dioxide, but is not as...

Im Focus: How protons move through a fuel cell

Hydrogen is regarded as the energy source of the future: It is produced with solar power and can be used to generate heat and electricity in fuel cells. Empa researchers have now succeeded in decoding the movement of hydrogen ions in crystals – a key step towards more efficient energy conversion in the hydrogen industry of tomorrow.

As charge carriers, electrons and ions play the leading role in electrochemical energy storage devices and converters such as batteries and fuel cells. Proton...

Im Focus: A unique data centre for cosmological simulations

Scientists from the Excellence Cluster Universe at the Ludwig-Maximilians-Universität Munich have establised "Cosmowebportal", a unique data centre for cosmological simulations located at the Leibniz Supercomputing Centre (LRZ) of the Bavarian Academy of Sciences. The complete results of a series of large hydrodynamical cosmological simulations are available, with data volumes typically exceeding several hundred terabytes. Scientists worldwide can interactively explore these complex simulations via a web interface and directly access the results.

With current telescopes, scientists can observe our Universe’s galaxies and galaxy clusters and their distribution along an invisible cosmic web. From the...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Plants are networkers

19.06.2017 | Event News

Digital Survival Training for Executives

13.06.2017 | Event News

Global Learning Council Summit 2017

13.06.2017 | Event News

 
Latest News

Nanostructures taste the rainbow

29.06.2017 | Physics and Astronomy

New technique unveils 'matrix' inside tissues and tumors

29.06.2017 | Life Sciences

Cystic fibrosis alters the structure of mucus in airways

29.06.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>