Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Three-banded panther worm debuts as a new model in the study of regeneration

25.04.2014

Closely resembling plump grains of wild rice set in motion, the three-banded panther worms swimming in disposable containers in Whitehead Institute Member Peter Reddien's lab hardly seem like the next big thing in regeneration.

And yet, these little-studied organisms possess the ability to regenerate any part of their bodies and are amenable to molecular studies in the lab, making them a valuable addition to a field keen on understanding how mechanisms controlling regeneration have evolved over millennia and how they might be activated in humans.


The lab of Whitehead Institute Member Peter Reddien is introducing the scientific community to the three-banded panther worm (Hofstenia miamia), a small organism with the ability to regenerate any missing body part. As a model, Hofstenia could help further our understanding of regeneration, how its mechanisms have evolved over millennia, and what limits regeneration in other animals, including humans. Intriguingly, Hofstenia and the planarian Schmidtea mediterranea -- long the mainstay of Reddien's research -- rely on similar molecular pathways to control regeneration despite having evolved separately over the course of roughly 550 million years.

Credit: Kathleen Mazza and Mansi Srivastava/Whitehead Institute

Four years ago, postdoctoral researcher Mansi Srivastava and Reddien, collected these intriguing animals swimming among submerged mangrove leaves and other aquatic detritus in a chilly Bermudan pond. Known scientifically as Hofstenia miamia, the worm earned its common name from the three cream-colored stripes running across its body as well as its voracious appetite for live prey.

Found in the Caribbean, Bahamas, Bermuda, and even as far away as Japan and the Red Sea, the worms were reported to be endowed with regenerative capabilities. In the 1960s, one scientist described the fact that three-banded panther worms could regrow a severed head, although no additional reports followed.

"It was a big risk for us—it was not a project where you knew it was going to work from the beginning," says Reddien, who is also an associate professor of biology at MIT and a Howard Hughes Medical Institute (HHMI) Investigator. "I had no idea how successful we'd be with culturing the animals or how successful the methods for development would be. There are all kinds of ways we could've failed on this one, but it was fun. It's the kind of science that has an adventurous spirit to it. And the organism is an even better model organism than we could have hoped for."

Reddien and Srivastava present their new model to the scientific community in the May 19th issue of the journal Current Biology.

Once the worms arrived in their new home in Cambridge, the first test was to acclimate them to lab life and determine their needs for survival. Initially, the worms were dying. The salinity of their water was off, even though it matched the pond where they were found. Hofstenia also rejected the liver that is the dietary mainstay for Reddien's other model of regeneration, the planarian (Schmidtea mediterranea). The three-banded panther worms shrank in size and some resorted to cannibalism.

Eventually, the water quality was fixed and a preferred food source was identified: sea monkeys, also known as brine shrimp. Now the worms are thriving and laying numerous eggs, enough to create an ample supply of animals for experiments.

Through a series of dissections, Reddien and Srivastava established that Hofstenia not only regenerate their heads, but, like planarians, are also able to regrow any body part. The scientists then documented the worm's transcriptome—a list of all of the genes that are transcribed in the animal—and established that RNA interference (RNAi) could be used in this animal to inhibit specific genes and unlock the molecular functions that allow regeneration.

With these tools in hand, they determined that in Hofstenia, as in planarians, Wnt signaling controls regeneration along the anterior-posterior (head-tail) axis and Bmp-Admp signaling controls regeneration along the dorsal-ventral (back-belly) axis.

If Hofstenia and planarians were phylogenetically close, such similarities would not be surprising. But after analyzing the Hofstenia transcriptome, the team determined that the three-banded panther worm and planarians are only very distantly related, a view that had been proposed based on analyses with sequences from a small number of genes.

"I find that there is no evidence, even with this large dataset, for Hofstenia to be classified with planarians, which means the last common ancestor that these two species shared existed 550 million years ago. This is the common ancestor that we, humans, also share with these species," says Srivastava, who has a background in evolutionary developmental biology and authored the Current Biology article. "The cool thing is that this raises the question of whether our common ancestor used these pathways—Wnt and Bmp signaling—to regenerate or not."

###

This work is supported by the Jane Coffin Childs Memorial Fund, Human Frontier Science Program, and the Keck Foundation.

Written by Nicole Giese Rura

Peter Reddien's primary affiliation is with Whitehead Institute for Biomedical Research, where his laboratory is located and all his research is conducted. He is also a Howard Hughes Medical Institute Investigator and an Associate Professor of Biology at the Massachusetts Institute of Technology.

Full Citation:

"Whole-body acoel regeneration is controlled by Wnt and Bmp-Admp signaling"

Current Biology, May 19, 2014.

Mansi Srivastava (1), Kathleen L. Mazza-Curll (1), Josien C. van Wolfswinkel (1), and Peter W. Reddien (1).

1. Howard Hughes Medical Institute, Whitehead Institute for Biomedical Research, and Department of Biology, Massachusetts Institute of Technology, 9 Cambridge Center, Cambridge, MA 02142, USA.

Matt Fearer | Eurek Alert!

Further reports about: Biology Biomedical Medical Technology Wnt ancestor animals genes humans organism species

More articles from Life Sciences:

nachricht What the world's tiniest 'monster truck' reveals
23.08.2017 | American Chemical Society

nachricht Treating arthritis with algae
23.08.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Fizzy soda water could be key to clean manufacture of flat wonder material: Graphene

Whether you call it effervescent, fizzy, or sparkling, carbonated water is making a comeback as a beverage. Aside from quenching thirst, researchers at the University of Illinois at Urbana-Champaign have discovered a new use for these "bubbly" concoctions that will have major impact on the manufacturer of the world's thinnest, flattest, and one most useful materials -- graphene.

As graphene's popularity grows as an advanced "wonder" material, the speed and quality at which it can be manufactured will be paramount. With that in mind,...

Im Focus: Exotic quantum states made from light: Physicists create optical “wells” for a super-photon

Physicists at the University of Bonn have managed to create optical hollows and more complex patterns into which the light of a Bose-Einstein condensate flows. The creation of such highly low-loss structures for light is a prerequisite for complex light circuits, such as for quantum information processing for a new generation of computers. The researchers are now presenting their results in the journal Nature Photonics.

Light particles (photons) occur as tiny, indivisible portions. Many thousands of these light portions can be merged to form a single super-photon if they are...

Im Focus: Circular RNA linked to brain function

For the first time, scientists have shown that circular RNA is linked to brain function. When a RNA molecule called Cdr1as was deleted from the genome of mice, the animals had problems filtering out unnecessary information – like patients suffering from neuropsychiatric disorders.

While hundreds of circular RNAs (circRNAs) are abundant in mammalian brains, one big question has remained unanswered: What are they actually good for? In the...

Im Focus: RAVAN CubeSat measures Earth's outgoing energy

An experimental small satellite has successfully collected and delivered data on a key measurement for predicting changes in Earth's climate.

The Radiometer Assessment using Vertically Aligned Nanotubes (RAVAN) CubeSat was launched into low-Earth orbit on Nov. 11, 2016, in order to test new...

Im Focus: Scientists shine new light on the “other high temperature superconductor”

A study led by scientists of the Max Planck Institute for the Structure and Dynamics of Matter (MPSD) at the Center for Free-Electron Laser Science in Hamburg presents evidence of the coexistence of superconductivity and “charge-density-waves” in compounds of the poorly-studied family of bismuthates. This observation opens up new perspectives for a deeper understanding of the phenomenon of high-temperature superconductivity, a topic which is at the core of condensed matter research since more than 30 years. The paper by Nicoletti et al has been published in the PNAS.

Since the beginning of the 20th century, superconductivity had been observed in some metals at temperatures only a few degrees above the absolute zero (minus...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Papers – ICNFT 2018, 5th International Conference on New Forming Technology

16.08.2017 | Event News

Sustainability is the business model of tomorrow

04.08.2017 | Event News

Clash of Realities 2017: Registration now open. International Conference at TH Köln

26.07.2017 | Event News

 
Latest News

What the world's tiniest 'monster truck' reveals

23.08.2017 | Life Sciences

Treating arthritis with algae

23.08.2017 | Life Sciences

Witnessing turbulent motion in the atmosphere of a distant star

23.08.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>