Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Thermally Stable Solar Cell Materials

04.05.2012
A new approach can help scientists predict the thermal stability of potential absorber materials for solar cells

European researchers have developed a simple thermodynamic method to predict whether a substance can resist the high temperatures normally involved in the production of thin films for photovoltaic devices. The new approach could help scientists in their search for better energy materials.

Jonathan Scragg of Uppsala University, Sweden, and his colleagues of the University of Bath, UK, and the University of Luxembourg present their results in ChemPhysChem.

"There are many things to consider when looking for the ideal material in a solar cell", Scragg says. "It must be very effective in converting light into electricity, should not contain any rare, expensive or dangerous raw materials, and must be easy to manufacture with high quality".

However, most of the existing non-silicon inorganic thin-film solar cell technologies are based on either toxic substances, such as cadmium telluride (CdTe), or relatively rare substances, such as copper indium gallium selenide (CIGSe). Many researchers worldwide are therefore searching for alternative materials to overcome these limitations.

"We are faced with a huge problem", Scragg says. "Nature has provided such a large number of different materials that it is impossible to test every single one. We describe a method that can vastly simplify this problem".

During the manufacturing process, solar cell materials must be heated to high temperatures—in a step called annealing—so that they can crystallize with the required quality. However, many materials cannot tolerate these high temperatures without breaking down, which makes them fundamentally unsuitable. Scragg and co-workers have now found a way to determine beforehand whether a substance will be able to resist the high temperatures encountered in the manufacturing process or not.

They predicted the reactions taking place during the thermal treatment of layers of several multinary semiconductor compounds on different substrates and demonstrated that the annealing conditions can be controlled to maximize the stability and quality of the materials.

The scientists studied different substances, such as CIGSe, copper zinc tin selenide (CZTSe), and other less-known ternary and quaternary semiconductors. Scragg believes that the new approach will be of great help in the search for better absorber materials:

"There are many alternative materials out there, some of which are very promising and some of which may never meet the demands of the solar cell. Few of these alternatives ever receive the time and resources required to develop them to a high enough level. Instead of focusing on one single material, we take a broader approach, providing a method to determine which materials are potentially useful, and which have fundamental limitations", he says.

Author: Jonathan Scragg, Uppsala University (Sweden), mailto:jonathan.scragg@angstrom.uu.se
Title: Thermodynamic Aspects of the Synthesis of Thin-Film Materials for Solar Cells

ChemPhysChem, Permalink to the article: http://dx.doi.org/10.1002/cphc.201200067

Jonathan Scragg | Wiley-VCH
Further information:
http://www.wiley.com

More articles from Life Sciences:

nachricht Decoding the genome's cryptic language
27.02.2017 | University of California - San Diego

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Safe glide at total engine failure with ELA-inside

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded after a glide flight with an Airbus A320 in ditching on the Hudson River. All 155 people on board were saved.

On January 15, 2009, Chesley B. Sullenberger was celebrated world-wide: after the two engines had failed due to bird strike, he and his flight crew succeeded...

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

New pop-up strategy inspired by cuts, not folds

27.02.2017 | Materials Sciences

Sandia uses confined nanoparticles to improve hydrogen storage materials performance

27.02.2017 | Interdisciplinary Research

Decoding the genome's cryptic language

27.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>