Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Theory Explains Mysterious Nature of Glass

01.10.2008
The history of glass dates back 5,000 years, yet its nature still perplexes scientists. How do glassy materials make the transition from a molten state to a solid? Richard Wool, professor of chemical engineering at the University of Delaware, thinks he has the answer -- Twinkling Fractal Theory.

Archaeological evidence suggests that glass was first made in the Middle East sometime around 3000 B.C. However, almost 5,000 years later, scientists are still perplexed about how glassy materials make the transition from a molten state to a solid. Richard Wool, professor of chemical engineering at UD, thinks he has the answer.

What distinguishes glasses from other materials is that even after hardening, they retain the molecular disorder of a liquid. In contrast, other liquids--for example, water--assume an ordered crystal pattern when they harden. Glass does not undergo such a neat phase transition; rather, the molecules simply slow down gradually until they are stuck in an odd state somewhere between a liquid and a solid.

In a paper to be published later this year in the Journal of Polymer Science Part B: Polymer Physics, Wool documents a new conceptual approach, known as the Twinkling Fractal Theory (TFT), to understanding the nature and structure of the glass transition in amorphous materials. The theory provides a quantitative way of describing a phenomenon that was previously explained from a strictly empirical perspective.

“The TFT enables a number of predictions of universal behavior to be made about glassy materials of all sorts, including polymers, metals and ceramics,” Wool says.

Another difference between glasses and more conventional materials is that their transition from the liquid to the solid state does not occur at a standard temperature, like that of water to ice, but instead is rate-dependent: the more rapid the cooling, the higher the glass transition temperature.

Wool discovered that as a liquid cools toward the glassy state, the atoms form clusters that eventually become stable and percolate near the glass transition temperature. The percolating clusters are stable fractals, or structures with irregular or fragmented shapes.

“At the glass transition temperature, these fractals appear to twinkle in a specific frequency spectrum,” Wool says. “The twinkling frequencies determine the kinetics of the glass transition temperature and the dynamics of the glassy state.”

The theory has been validated by experimental results reported by Nathan Israeloff, a physics professor at Northeastern University. “He was not aware of the TFT,” Wool says, “but his results fit my theory in extraordinarily explicit detail.”

TFT was developed as an outgrowth of Wool's research on bio-based materials such as soy-based composites. “It was my need to solve issues in the development of these materials that led me to the theory,” he says.

For now, Wool is content to view the theory as a portal into materials science and solid-state physics that others can use to go in new directions. “Acceptance will come when people recognize that it works,” he says.

TFT has the potential to contribute to better understanding of such phenomena as fracture, aggregation and physical aging of materials. “It is also giving us new insights into the peculiarities of nanomaterials, which behave very differently from their macroscopic counterparts,” Wool says.

Wool, who earned his doctorate at the University of Utah, joined the UD faculty in 1995. An affiliated faculty member in the Center for Composite Materials, he was recently featured on the Sundance Channel series “Big Ideas for a Small Planet.”

Andrea Boyle | Newswise Science News
Further information:
http://www.udel.edu

Further reports about: Liquid Molecules Polymer Solid TFT Theory Twinkling Fractal Theory Wool glass glassy materials liquids transition

More articles from Life Sciences:

nachricht Rutgers scientists discover 'Legos of life'
23.01.2018 | Rutgers University

nachricht Researchers identify a protein that keeps metastatic breast cancer cells dormant
23.01.2018 | Institute for Research in Biomedicine (IRB Barcelona)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Optical Nanoscope Allows Imaging of Quantum Dots

Physicists have developed a technique based on optical microscopy that can be used to create images of atoms on the nanoscale. In particular, the new method allows the imaging of quantum dots in a semiconductor chip. Together with colleagues from the University of Bochum, scientists from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute reported the findings in the journal Nature Photonics.

Microscopes allow us to see structures that are otherwise invisible to the human eye. However, conventional optical microscopes cannot be used to image...

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Rutgers scientists discover 'Legos of life'

23.01.2018 | Life Sciences

Seabed mining could destroy ecosystems

23.01.2018 | Earth Sciences

Transportable laser

23.01.2018 | Physics and Astronomy

VideoLinks Science & Research
Overview of more VideoLinks >>>