Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The world’s first bat net for migrating bats is launched in Latvia

19.08.2014

The worldwide largest funnel trap designed for the purpose of studying migratory bats will opened at the ornithological field station in Pape, Latvia, on August 19, 2014. At the same time, an ambitious international research project on the biology of migratory bats will be started. The project is expected to provide some key answers to many unsolved questions concerning flight paths, hibernation areas and metabolism of these ecologically valuable mammals.

The trap was built by Latvian and German biologists and designed to capture bats en route when migrating along the shore of the Baltic sea to central and southwestern Europe. The research project is part of a collaboration between the German Leibniz Institute for Zoo and Wildlife Research (IZW) and the Institute of Biology of the Latvian University of Agriculture.


Catching device for bats.

Photo: IZW/Oliver Lindecke

“Owing to decades of bird banding, ornithologists already know much about the migration of birds. However, the study of bat migration is still in its infancy. This is due to the fact that there are very few places worldwide where it is possible to observe and catch migrating bats in sufficient numbers.

The conservation area in Pape is unique in this regard, as bats concentrate in this area because of a so-called ‘bottleneck effect’. In Pape, the migration path towards the south is narrowed in a natural way by the shoreline of the Baltic Sea and Lake Pape. Therefore, migrating bats have to pass this narrow stretch of land. There is no other place in Europe to observe so many migrating bats at the same time”, states bat scientist Gunārs Pētersons, associate professor at the Latvian University for Agriculture.

... more about:
»Biology »IZW »Wildlife »animals »bats »migrating

Biologists estimate that with the help of the new 15 meter high funnel trap it will be possible to catch up to 1,000 bats per night. The researchers will ring as many animals as possible in order to figure out which migratory corridor they use.

All animals will be released immediately after they were banded. Previous efforts in banding bats at Pape in the 1980s and 1990s revealed that bats may travel distances of more than 1,900 km between their summer and hibernation areas. For example, some Nathusius pipistrelles, which had been ringed in Pape, were observed in southern France or Benelux countries.

The trap will help scientists to answer further questions about the life of migrating bats. It is for example unknown whether migrating bats use special migration corridors, or which summer and hibernation areas are linked. This infomation could contribute to the improved conservation of migrating bats.

Migrating bats face many conservation challenges, including the negotiation of the many new wind farms set up in Germany and many other European countries. Wind turbines are deadly traps for many wildlife speices, especially migrating bats.

Approximatly 300,000 bats are currently estimated to die per year at German wind turbines alone. Mitigation measures that balance the interests of renewable energy generation with protecting migrating bats are possible in principle and revolve around the adjustment of operational procedures in relation to the timing of main bat activity on a daily and seasonal level.

The new funnel trap in Pape will be officially inaugurated by the director of the Institute for Biology of the Latvian University of Agriculture, Prof Dr Viesturs Melecis and the director of the Leibniz Institute for Zoo and Wildlife Research (IZW), Prof Dr Heribert Hofer DPhil, as well as the leading Latvian and German scientists Prof Dr Gunārs Pētersons and PD Dr Christian Voigt. The opening event will take place on August 19, 2014 at the ornithological field station in Pape (region Rucava, Latvia).

Contact
University of Lattvia
Associated Prof Dr biol Gunārs Pētersons
Tel.:+371 29439097
gunars.petersons@llu.lv

Dr biol Oskars Keišs
Tel.: +371 29236300
oskars.keiss@lu.lv

Leibniz Institute for Zoo and Wildlife Research (IZW)
Alfred-Kowalke-Str. 17
10315 Berlin

PD Dr Christian C Voigt
Tel.: +49 30 5168-517
voigt@izw-berlin.de

Steven Seet
(Public Relations)
Tel.: +49 30 5168-125
seet@izw-berlin.de

The Leibniz Institute for Zoo and Wildlife Research (IZW) investigates the vitality and adaptability of wildlife populations in mammalian and avian species of outstanding ecological interest that face anthropogenic challenges. It studies the adaptive value of traits in the life cycle of wildlife, wildlife diseases and clarifies the biological basis and development of methods for the protection of threatened species. Such knowledge is a precondition for a scientifically based approach to conservation and for the development of concepts for the ecologically sustainable use of natural resources.

Weitere Informationen:

http://www.izw-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Further reports about: Biology IZW Wildlife animals bats migrating

More articles from Life Sciences:

nachricht New catalyst controls activation of a carbon-hydrogen bond
21.11.2017 | Emory Health Sciences

nachricht The main switch
21.11.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Nanoparticles help with malaria diagnosis – new rapid test in development

The WHO reports an estimated 429,000 malaria deaths each year. The disease mostly affects tropical and subtropical regions and in particular the African continent. The Fraunhofer Institute for Silicate Research ISC teamed up with the Fraunhofer Institute for Molecular Biology and Applied Ecology IME and the Institute of Tropical Medicine at the University of Tübingen for a new test method to detect malaria parasites in blood. The idea of the research project “NanoFRET” is to develop a highly sensitive and reliable rapid diagnostic test so that patient treatment can begin as early as possible.

Malaria is caused by parasites transmitted by mosquito bite. The most dangerous form of malaria is malaria tropica. Left untreated, it is fatal in most cases....

Im Focus: A “cosmic snake” reveals the structure of remote galaxies

The formation of stars in distant galaxies is still largely unexplored. For the first time, astron-omers at the University of Geneva have now been able to closely observe a star system six billion light-years away. In doing so, they are confirming earlier simulations made by the University of Zurich. One special effect is made possible by the multiple reflections of images that run through the cosmos like a snake.

Today, astronomers have a pretty accurate idea of how stars were formed in the recent cosmic past. But do these laws also apply to older galaxies? For around a...

Im Focus: Visual intelligence is not the same as IQ

Just because someone is smart and well-motivated doesn't mean he or she can learn the visual skills needed to excel at tasks like matching fingerprints, interpreting medical X-rays, keeping track of aircraft on radar displays or forensic face matching.

That is the implication of a new study which shows for the first time that there is a broad range of differences in people's visual ability and that these...

Im Focus: Novel Nano-CT device creates high-resolution 3D-X-rays of tiny velvet worm legs

Computer Tomography (CT) is a standard procedure in hospitals, but so far, the technology has not been suitable for imaging extremely small objects. In PNAS, a team from the Technical University of Munich (TUM) describes a Nano-CT device that creates three-dimensional x-ray images at resolutions up to 100 nanometers. The first test application: Together with colleagues from the University of Kassel and Helmholtz-Zentrum Geesthacht the researchers analyzed the locomotory system of a velvet worm.

During a CT analysis, the object under investigation is x-rayed and a detector measures the respective amount of radiation absorbed from various angles....

Im Focus: Researchers Develop Data Bus for Quantum Computer

The quantum world is fragile; error correction codes are needed to protect the information stored in a quantum object from the deteriorating effects of noise. Quantum physicists in Innsbruck have developed a protocol to pass quantum information between differently encoded building blocks of a future quantum computer, such as processors and memories. Scientists may use this protocol in the future to build a data bus for quantum computers. The researchers have published their work in the journal Nature Communications.

Future quantum computers will be able to solve problems where conventional computers fail today. We are still far away from any large-scale implementation,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Ecology Across Borders: International conference brings together 1,500 ecologists

15.11.2017 | Event News

Road into laboratory: Users discuss biaxial fatigue-testing for car and truck wheel

15.11.2017 | Event News

#Berlin5GWeek: The right network for Industry 4.0

30.10.2017 | Event News

 
Latest News

Previous evidence of water on mars now identified as grainflows

21.11.2017 | Physics and Astronomy

NASA's James Webb Space Telescope completes final cryogenic testing

21.11.2017 | Physics and Astronomy

New catalyst controls activation of a carbon-hydrogen bond

21.11.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>