Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The world’s first bat net for migrating bats is launched in Latvia


The worldwide largest funnel trap designed for the purpose of studying migratory bats will opened at the ornithological field station in Pape, Latvia, on August 19, 2014. At the same time, an ambitious international research project on the biology of migratory bats will be started. The project is expected to provide some key answers to many unsolved questions concerning flight paths, hibernation areas and metabolism of these ecologically valuable mammals.

The trap was built by Latvian and German biologists and designed to capture bats en route when migrating along the shore of the Baltic sea to central and southwestern Europe. The research project is part of a collaboration between the German Leibniz Institute for Zoo and Wildlife Research (IZW) and the Institute of Biology of the Latvian University of Agriculture.

Catching device for bats.

Photo: IZW/Oliver Lindecke

“Owing to decades of bird banding, ornithologists already know much about the migration of birds. However, the study of bat migration is still in its infancy. This is due to the fact that there are very few places worldwide where it is possible to observe and catch migrating bats in sufficient numbers.

The conservation area in Pape is unique in this regard, as bats concentrate in this area because of a so-called ‘bottleneck effect’. In Pape, the migration path towards the south is narrowed in a natural way by the shoreline of the Baltic Sea and Lake Pape. Therefore, migrating bats have to pass this narrow stretch of land. There is no other place in Europe to observe so many migrating bats at the same time”, states bat scientist Gunārs Pētersons, associate professor at the Latvian University for Agriculture.

... more about:
»Biology »IZW »Wildlife »animals »bats »migrating

Biologists estimate that with the help of the new 15 meter high funnel trap it will be possible to catch up to 1,000 bats per night. The researchers will ring as many animals as possible in order to figure out which migratory corridor they use.

All animals will be released immediately after they were banded. Previous efforts in banding bats at Pape in the 1980s and 1990s revealed that bats may travel distances of more than 1,900 km between their summer and hibernation areas. For example, some Nathusius pipistrelles, which had been ringed in Pape, were observed in southern France or Benelux countries.

The trap will help scientists to answer further questions about the life of migrating bats. It is for example unknown whether migrating bats use special migration corridors, or which summer and hibernation areas are linked. This infomation could contribute to the improved conservation of migrating bats.

Migrating bats face many conservation challenges, including the negotiation of the many new wind farms set up in Germany and many other European countries. Wind turbines are deadly traps for many wildlife speices, especially migrating bats.

Approximatly 300,000 bats are currently estimated to die per year at German wind turbines alone. Mitigation measures that balance the interests of renewable energy generation with protecting migrating bats are possible in principle and revolve around the adjustment of operational procedures in relation to the timing of main bat activity on a daily and seasonal level.

The new funnel trap in Pape will be officially inaugurated by the director of the Institute for Biology of the Latvian University of Agriculture, Prof Dr Viesturs Melecis and the director of the Leibniz Institute for Zoo and Wildlife Research (IZW), Prof Dr Heribert Hofer DPhil, as well as the leading Latvian and German scientists Prof Dr Gunārs Pētersons and PD Dr Christian Voigt. The opening event will take place on August 19, 2014 at the ornithological field station in Pape (region Rucava, Latvia).

University of Lattvia
Associated Prof Dr biol Gunārs Pētersons
Tel.:+371 29439097

Dr biol Oskars Keišs
Tel.: +371 29236300

Leibniz Institute for Zoo and Wildlife Research (IZW)
Alfred-Kowalke-Str. 17
10315 Berlin

PD Dr Christian C Voigt
Tel.: +49 30 5168-517

Steven Seet
(Public Relations)
Tel.: +49 30 5168-125

The Leibniz Institute for Zoo and Wildlife Research (IZW) investigates the vitality and adaptability of wildlife populations in mammalian and avian species of outstanding ecological interest that face anthropogenic challenges. It studies the adaptive value of traits in the life cycle of wildlife, wildlife diseases and clarifies the biological basis and development of methods for the protection of threatened species. Such knowledge is a precondition for a scientifically based approach to conservation and for the development of concepts for the ecologically sustainable use of natural resources.

Weitere Informationen:

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Further reports about: Biology IZW Wildlife animals bats migrating

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Novel mechanisms of action discovered for the skin cancer medication Imiquimod

21.10.2016 | Life Sciences

Second research flight into zero gravity

21.10.2016 | Life Sciences

How Does Friendly Fire Happen in the Pancreas?

21.10.2016 | Life Sciences

More VideoLinks >>>