Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The world’s first bat net for migrating bats is launched in Latvia

19.08.2014

The worldwide largest funnel trap designed for the purpose of studying migratory bats will opened at the ornithological field station in Pape, Latvia, on August 19, 2014. At the same time, an ambitious international research project on the biology of migratory bats will be started. The project is expected to provide some key answers to many unsolved questions concerning flight paths, hibernation areas and metabolism of these ecologically valuable mammals.

The trap was built by Latvian and German biologists and designed to capture bats en route when migrating along the shore of the Baltic sea to central and southwestern Europe. The research project is part of a collaboration between the German Leibniz Institute for Zoo and Wildlife Research (IZW) and the Institute of Biology of the Latvian University of Agriculture.


Catching device for bats.

Photo: IZW/Oliver Lindecke

“Owing to decades of bird banding, ornithologists already know much about the migration of birds. However, the study of bat migration is still in its infancy. This is due to the fact that there are very few places worldwide where it is possible to observe and catch migrating bats in sufficient numbers.

The conservation area in Pape is unique in this regard, as bats concentrate in this area because of a so-called ‘bottleneck effect’. In Pape, the migration path towards the south is narrowed in a natural way by the shoreline of the Baltic Sea and Lake Pape. Therefore, migrating bats have to pass this narrow stretch of land. There is no other place in Europe to observe so many migrating bats at the same time”, states bat scientist Gunārs Pētersons, associate professor at the Latvian University for Agriculture.

... more about:
»Biology »IZW »Wildlife »animals »bats »migrating

Biologists estimate that with the help of the new 15 meter high funnel trap it will be possible to catch up to 1,000 bats per night. The researchers will ring as many animals as possible in order to figure out which migratory corridor they use.

All animals will be released immediately after they were banded. Previous efforts in banding bats at Pape in the 1980s and 1990s revealed that bats may travel distances of more than 1,900 km between their summer and hibernation areas. For example, some Nathusius pipistrelles, which had been ringed in Pape, were observed in southern France or Benelux countries.

The trap will help scientists to answer further questions about the life of migrating bats. It is for example unknown whether migrating bats use special migration corridors, or which summer and hibernation areas are linked. This infomation could contribute to the improved conservation of migrating bats.

Migrating bats face many conservation challenges, including the negotiation of the many new wind farms set up in Germany and many other European countries. Wind turbines are deadly traps for many wildlife speices, especially migrating bats.

Approximatly 300,000 bats are currently estimated to die per year at German wind turbines alone. Mitigation measures that balance the interests of renewable energy generation with protecting migrating bats are possible in principle and revolve around the adjustment of operational procedures in relation to the timing of main bat activity on a daily and seasonal level.

The new funnel trap in Pape will be officially inaugurated by the director of the Institute for Biology of the Latvian University of Agriculture, Prof Dr Viesturs Melecis and the director of the Leibniz Institute for Zoo and Wildlife Research (IZW), Prof Dr Heribert Hofer DPhil, as well as the leading Latvian and German scientists Prof Dr Gunārs Pētersons and PD Dr Christian Voigt. The opening event will take place on August 19, 2014 at the ornithological field station in Pape (region Rucava, Latvia).

Contact
University of Lattvia
Associated Prof Dr biol Gunārs Pētersons
Tel.:+371 29439097
gunars.petersons@llu.lv

Dr biol Oskars Keišs
Tel.: +371 29236300
oskars.keiss@lu.lv

Leibniz Institute for Zoo and Wildlife Research (IZW)
Alfred-Kowalke-Str. 17
10315 Berlin

PD Dr Christian C Voigt
Tel.: +49 30 5168-517
voigt@izw-berlin.de

Steven Seet
(Public Relations)
Tel.: +49 30 5168-125
seet@izw-berlin.de

The Leibniz Institute for Zoo and Wildlife Research (IZW) investigates the vitality and adaptability of wildlife populations in mammalian and avian species of outstanding ecological interest that face anthropogenic challenges. It studies the adaptive value of traits in the life cycle of wildlife, wildlife diseases and clarifies the biological basis and development of methods for the protection of threatened species. Such knowledge is a precondition for a scientifically based approach to conservation and for the development of concepts for the ecologically sustainable use of natural resources.

Weitere Informationen:

http://www.izw-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Further reports about: Biology IZW Wildlife animals bats migrating

More articles from Life Sciences:

nachricht Water forms 'spine of hydration' around DNA, group finds
26.05.2017 | Cornell University

nachricht How herpesviruses win the footrace against the immune system
26.05.2017 | Helmholtz-Zentrum für Infektionsforschung

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Can the immune system be boosted against Staphylococcus aureus by delivery of messenger RNA?

Staphylococcus aureus is a feared pathogen (MRSA, multi-resistant S. aureus) due to frequent resistances against many antibiotics, especially in hospital infections. Researchers at the Paul-Ehrlich-Institut have identified immunological processes that prevent a successful immune response directed against the pathogenic agent. The delivery of bacterial proteins with RNA adjuvant or messenger RNA (mRNA) into immune cells allows the re-direction of the immune response towards an active defense against S. aureus. This could be of significant importance for the development of an effective vaccine. PLOS Pathogens has published these research results online on 25 May 2017.

Staphylococcus aureus (S. aureus) is a bacterium that colonizes by far more than half of the skin and the mucosa of adults, usually without causing infections....

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

How herpesviruses win the footrace against the immune system

26.05.2017 | Life Sciences

Water forms 'spine of hydration' around DNA, group finds

26.05.2017 | Life Sciences

First Juno science results supported by University of Leicester's Jupiter 'forecast'

26.05.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>