Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The world’s first bat net for migrating bats is launched in Latvia

19.08.2014

The worldwide largest funnel trap designed for the purpose of studying migratory bats will opened at the ornithological field station in Pape, Latvia, on August 19, 2014. At the same time, an ambitious international research project on the biology of migratory bats will be started. The project is expected to provide some key answers to many unsolved questions concerning flight paths, hibernation areas and metabolism of these ecologically valuable mammals.

The trap was built by Latvian and German biologists and designed to capture bats en route when migrating along the shore of the Baltic sea to central and southwestern Europe. The research project is part of a collaboration between the German Leibniz Institute for Zoo and Wildlife Research (IZW) and the Institute of Biology of the Latvian University of Agriculture.


Catching device for bats.

Photo: IZW/Oliver Lindecke

“Owing to decades of bird banding, ornithologists already know much about the migration of birds. However, the study of bat migration is still in its infancy. This is due to the fact that there are very few places worldwide where it is possible to observe and catch migrating bats in sufficient numbers.

The conservation area in Pape is unique in this regard, as bats concentrate in this area because of a so-called ‘bottleneck effect’. In Pape, the migration path towards the south is narrowed in a natural way by the shoreline of the Baltic Sea and Lake Pape. Therefore, migrating bats have to pass this narrow stretch of land. There is no other place in Europe to observe so many migrating bats at the same time”, states bat scientist Gunārs Pētersons, associate professor at the Latvian University for Agriculture.

... more about:
»Biology »IZW »Wildlife »animals »bats »migrating

Biologists estimate that with the help of the new 15 meter high funnel trap it will be possible to catch up to 1,000 bats per night. The researchers will ring as many animals as possible in order to figure out which migratory corridor they use.

All animals will be released immediately after they were banded. Previous efforts in banding bats at Pape in the 1980s and 1990s revealed that bats may travel distances of more than 1,900 km between their summer and hibernation areas. For example, some Nathusius pipistrelles, which had been ringed in Pape, were observed in southern France or Benelux countries.

The trap will help scientists to answer further questions about the life of migrating bats. It is for example unknown whether migrating bats use special migration corridors, or which summer and hibernation areas are linked. This infomation could contribute to the improved conservation of migrating bats.

Migrating bats face many conservation challenges, including the negotiation of the many new wind farms set up in Germany and many other European countries. Wind turbines are deadly traps for many wildlife speices, especially migrating bats.

Approximatly 300,000 bats are currently estimated to die per year at German wind turbines alone. Mitigation measures that balance the interests of renewable energy generation with protecting migrating bats are possible in principle and revolve around the adjustment of operational procedures in relation to the timing of main bat activity on a daily and seasonal level.

The new funnel trap in Pape will be officially inaugurated by the director of the Institute for Biology of the Latvian University of Agriculture, Prof Dr Viesturs Melecis and the director of the Leibniz Institute for Zoo and Wildlife Research (IZW), Prof Dr Heribert Hofer DPhil, as well as the leading Latvian and German scientists Prof Dr Gunārs Pētersons and PD Dr Christian Voigt. The opening event will take place on August 19, 2014 at the ornithological field station in Pape (region Rucava, Latvia).

Contact
University of Lattvia
Associated Prof Dr biol Gunārs Pētersons
Tel.:+371 29439097
gunars.petersons@llu.lv

Dr biol Oskars Keišs
Tel.: +371 29236300
oskars.keiss@lu.lv

Leibniz Institute for Zoo and Wildlife Research (IZW)
Alfred-Kowalke-Str. 17
10315 Berlin

PD Dr Christian C Voigt
Tel.: +49 30 5168-517
voigt@izw-berlin.de

Steven Seet
(Public Relations)
Tel.: +49 30 5168-125
seet@izw-berlin.de

The Leibniz Institute for Zoo and Wildlife Research (IZW) investigates the vitality and adaptability of wildlife populations in mammalian and avian species of outstanding ecological interest that face anthropogenic challenges. It studies the adaptive value of traits in the life cycle of wildlife, wildlife diseases and clarifies the biological basis and development of methods for the protection of threatened species. Such knowledge is a precondition for a scientifically based approach to conservation and for the development of concepts for the ecologically sustainable use of natural resources.

Weitere Informationen:

http://www.izw-berlin.de

Karl-Heinz Karisch | Forschungsverbund Berlin e.V.

Further reports about: Biology IZW Wildlife animals bats migrating

More articles from Life Sciences:

nachricht New mechanisms uncovered explaining frost tolerance in plants
26.09.2016 | Technische Universität München

nachricht Chains of nanogold – forged with atomic precision
23.09.2016 | Suomen Akatemia (Academy of Finland)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

Im Focus: Complex hardmetal tools out of the 3D printer

For the first time, Fraunhofer IKTS shows additively manufactured hardmetal tools at WorldPM 2016 in Hamburg. Mechanical, chemical as well as a high heat resistance and extreme hardness are required from tools that are used in mechanical and automotive engineering or in plastics and building materials industry. Researchers at the Fraunhofer Institute for Ceramic Technologies and Systems IKTS in Dresden managed the production of complex hardmetal tools via 3D printing in a quality that are in no way inferior to conventionally produced high-performance tools.

Fraunhofer IKTS counts decades of proven expertise in the development of hardmetals. To date, reliable cutting, drilling, pressing and stamping tools made of...

Im Focus: Launch of New Industry Working Group for Process Control in Laser Material Processing

At AKL’16, the International Laser Technology Congress held in May this year, interest in the topic of process control was greater than expected. Appropriately, the event was also used to launch the Industry Working Group for Process Control in Laser Material Processing. The group provides a forum for representatives from industry and research to initiate pre-competitive projects and discuss issues such as standards, potential cost savings and feasibility.

In the age of industry 4.0, laser technology is firmly established within manufacturing. A wide variety of laser techniques – from USP ablation and additive...

Im Focus: New laser joining technologies at ‘K 2016’ trade fair

Every three years, the plastics industry gathers at K, the international trade fair for plastics and rubber in Düsseldorf. The Fraunhofer Institute for Laser Technology ILT will also be attending again and presenting many innovative technologies, such as for joining plastics and metals using ultrashort pulse lasers. From October 19 to 26, you can find the Fraunhofer ILT at the joint Fraunhofer booth SC01 in Hall 7.

K is the world’s largest trade fair for the plastics and rubber industry. As in previous years, the organizers are expecting 3,000 exhibitors and more than...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Experts from industry and academia discuss the future mobile telecommunications standard 5G

23.09.2016 | Event News

ICPE in Graz for the seventh time

20.09.2016 | Event News

Using mathematical models to understand our brain

16.09.2016 | Event News

 
Latest News

Stronger turbine blades with molybdenum silicides

26.09.2016 | Materials Sciences

Scientists Find Twisting 3-D Raceway for Electrons in Nanoscale Crystal Slices

26.09.2016 | Materials Sciences

Lowering the Heat Makes New Materials Possible While Saving Energy

26.09.2016 | Materials Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>