Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The taming of the shrew - The bicoloured shrew is a health risk for horses

11.04.2014

The bicoloured shrew is a protected species in Central Europe, but these furry insect-eaters have a dark secret. Researchers from the Vetmeduni Vienna have discovered that bicoloured shrews carry the Borna virus. Infection with this virus causes fatal encephalitis in horses. The mechanisms of transmission had until now been unclear, but we now know more about one route - from bicoloured shrews to hosts. The study was published recently in the journal PLOS ONE.

The Borna disease – named after the German city of Borna, which saw a cluster of cases over 100 years ago – mainly affects horses and sheep, and in rare cases cattle and rabbits too. A single case of an infected dog has been reported. Affected horses seclude themselves from the herd and suffer from depression and general disorientation. Ultimately, this incurable infection is fatal.

Borna virus detected in bicoloured shrews

Researchers have long been in the dark concerning the transmission mechanism of the Borna virus. The bicoloured shrew was one suspect, but definitive proof was missing. Norbert Nowotny and Jolanta Kolodziejek from the Institute of Virology and Herbert Weissenböck from the Institute of Pathology and Forensic Veterinary Medicine carried out a study on 107 shrews from the German region of Saxony-Anhalt together with a colleague from Germany. All the shrews were found dead, and 58 of them were bicoloured shrews, 14 of which carried the Borna virus. No Borna viruses were detected in the other shrew species.

Possible transmission mechanism

By examining tissue samples, it was discovered that the shrews carried significant amounts of virus in almost all their organs, including the mucosae of the oral cavity, the respiratory tract and the skin. This meant that dead skin scales from these animals might be infectious.
“We were surprised to discover significant amounts of viruses in the shrews’ skin. Usually, viruses are found deeper inside a transmitting organism and are excreted in urine and faeces. In horses, the virus first affects the olfactory brain area, so we assume that infection occurs via the respiratory tract rather than the digestive tract,” explains co-author and pathologist Weissenböck.

Shrews do not migrate

The bicoloured shrew (Crocidura leucodon) lives exclusively in Central Europe, the region where the Borna disease occurs. This area is mostly within Germany, but also includes the eastern part of Switzerland and Vorarlberg in western Austria. Virologist Nowotny explains: “The distribution of bicoloured shrews remains fairly constant because the animals stay within their habitats. They do not like to move around.” In fact, the number of incidents of Borna disease has actually declined in the last few years. There are currently about 100 cases per year.

Genetics reveals transmission mechanism

A genetic analysis of viruses taken from bicoloured shrews and horses provides further proof that the bicoloured shrew acts as a ‘pathogen reservoir’. The viral strains found in the shrews correspond exactly with the strains from sick horses in the same region. This supports the assumption that the virus sub-types develop in a particular region over the course of centuries in bicoloured shrews and do not generally spread beyond that area. These sub types can then be transmitted to horses.

Borna disease not contagious

The transmission mechanism of the Borna disease is remarkable in that the virus is not transmitted from one infected animal to another, so an intermediate host is needed – the bicoloured shrew. The disease is therefore not directly contagious. This is why it never affects whole herds, but individuals. “The best way to avoid transmission is to keep shrews away from the stables. Normal hygiene measures should be sufficient”, says study leader Nowotny.

The article “The bicolored white-toothed shrew Crocidura leucodon (HERMANN 1780) is an indigenous host of mammalian Borna disease virus” by Ralf Dürrwald, Jolanta Kolodziejek, Herbert Weissenböck and Norbert Nowotny was published on the 3rd of April in the Journal PLOS ONE. http://dx.plos.org/10.1371/journal.pone.0093659

 
About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna is the only academic and research institution in Austria that focuses on the veterinary sciences. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms. http://www.vetmeduni.ac.at

Scientific Contact:
Prof. Herbert Weissenböck
Institute of Pathology and Forensic Veterinary Medicine
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 20577-2418
herbert.weissenboeck@vetmeduni.ac.at

Released by:
Heike Hochhauser
Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1151
heike.hochhauser@vetmeduni.ac.at

Weitere Informationen:

http://www.vetmeduni.ac.at/en/infoservice/presseinformation/press-releases-2014/...

Heike Hochhauser | idw - Informationsdienst Wissenschaft

Further reports about: Borna disease Medicine Pathology Sheep Veterinary Veterinary Medicine horses skin strains viruses

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>