Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The taming of the shrew - The bicoloured shrew is a health risk for horses


The bicoloured shrew is a protected species in Central Europe, but these furry insect-eaters have a dark secret. Researchers from the Vetmeduni Vienna have discovered that bicoloured shrews carry the Borna virus. Infection with this virus causes fatal encephalitis in horses. The mechanisms of transmission had until now been unclear, but we now know more about one route - from bicoloured shrews to hosts. The study was published recently in the journal PLOS ONE.

The Borna disease – named after the German city of Borna, which saw a cluster of cases over 100 years ago – mainly affects horses and sheep, and in rare cases cattle and rabbits too. A single case of an infected dog has been reported. Affected horses seclude themselves from the herd and suffer from depression and general disorientation. Ultimately, this incurable infection is fatal.

Borna virus detected in bicoloured shrews

Researchers have long been in the dark concerning the transmission mechanism of the Borna virus. The bicoloured shrew was one suspect, but definitive proof was missing. Norbert Nowotny and Jolanta Kolodziejek from the Institute of Virology and Herbert Weissenböck from the Institute of Pathology and Forensic Veterinary Medicine carried out a study on 107 shrews from the German region of Saxony-Anhalt together with a colleague from Germany. All the shrews were found dead, and 58 of them were bicoloured shrews, 14 of which carried the Borna virus. No Borna viruses were detected in the other shrew species.

Possible transmission mechanism

By examining tissue samples, it was discovered that the shrews carried significant amounts of virus in almost all their organs, including the mucosae of the oral cavity, the respiratory tract and the skin. This meant that dead skin scales from these animals might be infectious.
“We were surprised to discover significant amounts of viruses in the shrews’ skin. Usually, viruses are found deeper inside a transmitting organism and are excreted in urine and faeces. In horses, the virus first affects the olfactory brain area, so we assume that infection occurs via the respiratory tract rather than the digestive tract,” explains co-author and pathologist Weissenböck.

Shrews do not migrate

The bicoloured shrew (Crocidura leucodon) lives exclusively in Central Europe, the region where the Borna disease occurs. This area is mostly within Germany, but also includes the eastern part of Switzerland and Vorarlberg in western Austria. Virologist Nowotny explains: “The distribution of bicoloured shrews remains fairly constant because the animals stay within their habitats. They do not like to move around.” In fact, the number of incidents of Borna disease has actually declined in the last few years. There are currently about 100 cases per year.

Genetics reveals transmission mechanism

A genetic analysis of viruses taken from bicoloured shrews and horses provides further proof that the bicoloured shrew acts as a ‘pathogen reservoir’. The viral strains found in the shrews correspond exactly with the strains from sick horses in the same region. This supports the assumption that the virus sub-types develop in a particular region over the course of centuries in bicoloured shrews and do not generally spread beyond that area. These sub types can then be transmitted to horses.

Borna disease not contagious

The transmission mechanism of the Borna disease is remarkable in that the virus is not transmitted from one infected animal to another, so an intermediate host is needed – the bicoloured shrew. The disease is therefore not directly contagious. This is why it never affects whole herds, but individuals. “The best way to avoid transmission is to keep shrews away from the stables. Normal hygiene measures should be sufficient”, says study leader Nowotny.

The article “The bicolored white-toothed shrew Crocidura leucodon (HERMANN 1780) is an indigenous host of mammalian Borna disease virus” by Ralf Dürrwald, Jolanta Kolodziejek, Herbert Weissenböck and Norbert Nowotny was published on the 3rd of April in the Journal PLOS ONE.

About the University of Veterinary Medicine, Vienna

The University of Veterinary Medicine, Vienna is the only academic and research institution in Austria that focuses on the veterinary sciences. About 1,200 employees and 2,300 students work on the campus in the north of Vienna which also houses five university clinics and various research sites. Outside of Vienna the university operates Teaching and Research Farms.

Scientific Contact:
Prof. Herbert Weissenböck
Institute of Pathology and Forensic Veterinary Medicine
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 20577-2418

Released by:
Heike Hochhauser
Public Relations
University of Veterinary Medicine Vienna (Vetmeduni Vienna)
T +43 1 25077-1151

Weitere Informationen:

Heike Hochhauser | idw - Informationsdienst Wissenschaft

Further reports about: Borna disease Medicine Pathology Sheep Veterinary Veterinary Medicine horses skin strains viruses

More articles from Life Sciences:

nachricht Novel mechanisms of action discovered for the skin cancer medication Imiquimod
21.10.2016 | Technische Universität München

nachricht Second research flight into zero gravity
21.10.2016 | Universität Zürich

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

Im Focus: New Products - Highlights of COMPAMED 2016

COMPAMED has become the leading international marketplace for suppliers of medical manufacturing. The trade fair, which takes place every November and is co-located to MEDICA in Dusseldorf, has been steadily growing over the past years and shows that medical technology remains a rapidly growing market.

In 2016, the joint pavilion by the IVAM Microtechnology Network, the Product Market “High-tech for Medical Devices”, will be located in Hall 8a again and will...

Im Focus: Ultra-thin ferroelectric material for next-generation electronics

'Ferroelectric' materials can switch between different states of electrical polarization in response to an external electric field. This flexibility means they show promise for many applications, for example in electronic devices and computer memory. Current ferroelectric materials are highly valued for their thermal and chemical stability and rapid electro-mechanical responses, but creating a material that is scalable down to the tiny sizes needed for technologies like silicon-based semiconductors (Si-based CMOS) has proven challenging.

Now, Hiroshi Funakubo and co-workers at the Tokyo Institute of Technology, in collaboration with researchers across Japan, have conducted experiments to...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Resolving the mystery of preeclampsia

21.10.2016 | Health and Medicine

Stanford researchers create new special-purpose computer that may someday save us billions

21.10.2016 | Information Technology

From ancient fossils to future cars

21.10.2016 | Materials Sciences

More VideoLinks >>>