Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The skin as a window to the brain

12.05.2014

Diagnosing Parkinson's disease is difficult, especially in the early stage of the disease. Neurologists of the University Hospital of Würzburg have now shown a way that could be beneficial to both early diagnosis and research. They found the key in the patients' skin.

A definite diagnosis is only possible post-mortem. Only then can pathologists examine the brain for typical depositions of the protein alpha-synuclein in the nerve cells of specific brain regions and thus reliably diagnose Parkinson's disease (PD).

Before that, physicians have to rely on a number of typical symptoms which are indicative of Parkinson's disease. The diagnosis is obvious in patients who move slowly, have a limited range of motion, stiff muscles and tremors at rest or have difficulty keeping their balance. But these symptoms only occur in the advanced stage of the disease; until then, the diagnosis remains extremely uncertain.

Depositions in cutaneous nerve fibres

This could change in the foreseeable future: Neurologists from Würzburg found out that in about half of the PD patients the alpha-synuclein depositions are also detectable in the small nerve fibres of the skin. Since the skin is much easier to access than the brain, Professor Claudia Sommer and her team are hopeful to reliably diagnose the disease pre-mortem in the future by means of a simple skin biopsy. And what is more, the scientists believe that this will allow them to investigate the disease mechanism in the skin, which is still largely unknown. The results of the study have just been published in the magazine Acta Neuropathologica.

The study

31 PD patients from the neurological department of the University Hospital of Würzburg and from the Paracelsus Elena Hospital in Kassel and 35 healthy controls participated in the study. Small skin biopsies were taken from all participants at the lower and upper leg, index finger and back. Additionally, the scientists conducted a number of further examinations to exclude other causes of nerve damage.

"We identified phosphorylated alpha-synuclein in the histological samples of 16 PD patients but in none of the controls," first-time author Kathrin Doppler sums up the study results. In other words: Whereas about every second PD patient exhibited the typical depositions, they did not occur in any of the healthy controls.

The scientists made another finding that is interesting for an early diagnosis: "Alpha-synuclein occurred equally in patients in early and late stages of the disease," Kathrin Doppler explains. She pointed out that this was unrelated to the course of the disease.

Identical changes in the skin and in the brain

The scientists most frequently encountered alpha-synuclein in skin biopsies from the back of patients. They also registered a decreased number of nerve fibres in patients with Parkinson's disease compared to the healthy controls. They reported that the types of nerve fibres affected were similar to those in the brain of PD patients. The scientists take this as a promising sign that "the changes in the skin of PD patients are reflective of features of brain pathology, which could render it a useful tool for pathogenetic studies".

In a follow-up study, the Würzburg scientists are characterising the cutaneous alpha-synuclein depositions in greater detail to learn more about their effects on the function and survival of nerve fibres. In doing so, they hope to shed more light on the disease mechanism which is still largely unknown.

The work was funded by the First-time Applicant Program of the Interdisciplinary Center for Clinical Research (IZKF) of the University Hospital of Würzburg.

"Cutaneous neuropathy in Parkinson’s disease: a window into brain pathology" Kathrin Doppler, Sönke Ebert, Nurcan Üçeyler, Claudia Trenkwalder, Jens Ebentheuer, Jens Volkmann, Claudia Sommer; published online on 04 Mai 2014, doi: 10.1007/s00401-014-1284-0

Contact

Dr. Kathrin Doppler, T: +49-931-201-23787, Doppler_k@ukw.de
Prof. Dr. Claudia Sommer, sommer@uni-wuerzburg.de

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht A cell senses its own curves: New research from the MBL Whitman Center
29.04.2016 | Marine Biological Laboratory

nachricht A New Discovery in the Fight against Cancer: Tumor Cells Switch to a Different Mode
29.04.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Tiny microbots that can clean up water

Researchers from the Max Planck Institute Stuttgart have developed self-propelled tiny ‘microbots’ that can remove lead or organic pollution from contaminated water.

Working with colleagues in Barcelona and Singapore, Samuel Sánchez’s group used graphene oxide to make their microscale motors, which are able to adsorb lead...

Im Focus: ORNL researchers discover new state of water molecule

Neutron scattering and computational modeling have revealed unique and unexpected behavior of water molecules under extreme confinement that is unmatched by any known gas, liquid or solid states.

In a paper published in Physical Review Letters, researchers at the Department of Energy's Oak Ridge National Laboratory describe a new tunneling state of...

Im Focus: Bionic Lightweight Design researchers of the Alfred Wegener Institute at Hannover Messe 2016

Honeycomb structures as the basic building block for industrial applications presented using holo pyramid

Researchers of the Alfred Wegener Institute (AWI) will introduce their latest developments in the field of bionic lightweight design at Hannover Messe from 25...

Im Focus: New world record for fullerene-free polymer solar cells

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences (CAS). This work is about avoiding costly and unstable fullerenes.

Polymer solar cells can be even cheaper and more reliable thanks to a breakthrough by scientists at Linköping University and the Chinese Academy of Sciences...

Im Focus: Ultra-thin glass is up and coming

As one of the leading R&D partners in the development of surface technologies and organic electronics, the Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP will be exhibiting its recent achievements in vacuum coating of ultra-thin glass at SVC TechCon 2016 (Booth 846), taking place in Indianapolis / USA from May 9 – 13.

Fraunhofer FEP is an experienced partner for technological developments, known for testing the limits of new materials and for optimization of those materials...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The “AC21 International Forum 2016” is About to Begin

27.04.2016 | Event News

Soft switching combines efficiency and improved electro-magnetic compatibility

15.04.2016 | Event News

Grid-Supportive Buildings Give Boost to Renewable Energy Integration

12.04.2016 | Event News

 
Latest News

Winds a quarter the speed of light spotted leaving mysterious binary systems

29.04.2016 | Physics and Astronomy

Fiber optic biosensor-integrated microfluidic chip to detect glucose levels

29.04.2016 | Health and Medicine

A cell senses its own curves: New research from the MBL Whitman Center

29.04.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>