Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The skin as a window to the brain

12.05.2014

Diagnosing Parkinson's disease is difficult, especially in the early stage of the disease. Neurologists of the University Hospital of Würzburg have now shown a way that could be beneficial to both early diagnosis and research. They found the key in the patients' skin.

A definite diagnosis is only possible post-mortem. Only then can pathologists examine the brain for typical depositions of the protein alpha-synuclein in the nerve cells of specific brain regions and thus reliably diagnose Parkinson's disease (PD).

Before that, physicians have to rely on a number of typical symptoms which are indicative of Parkinson's disease. The diagnosis is obvious in patients who move slowly, have a limited range of motion, stiff muscles and tremors at rest or have difficulty keeping their balance. But these symptoms only occur in the advanced stage of the disease; until then, the diagnosis remains extremely uncertain.

Depositions in cutaneous nerve fibres

This could change in the foreseeable future: Neurologists from Würzburg found out that in about half of the PD patients the alpha-synuclein depositions are also detectable in the small nerve fibres of the skin. Since the skin is much easier to access than the brain, Professor Claudia Sommer and her team are hopeful to reliably diagnose the disease pre-mortem in the future by means of a simple skin biopsy. And what is more, the scientists believe that this will allow them to investigate the disease mechanism in the skin, which is still largely unknown. The results of the study have just been published in the magazine Acta Neuropathologica.

The study

31 PD patients from the neurological department of the University Hospital of Würzburg and from the Paracelsus Elena Hospital in Kassel and 35 healthy controls participated in the study. Small skin biopsies were taken from all participants at the lower and upper leg, index finger and back. Additionally, the scientists conducted a number of further examinations to exclude other causes of nerve damage.

"We identified phosphorylated alpha-synuclein in the histological samples of 16 PD patients but in none of the controls," first-time author Kathrin Doppler sums up the study results. In other words: Whereas about every second PD patient exhibited the typical depositions, they did not occur in any of the healthy controls.

The scientists made another finding that is interesting for an early diagnosis: "Alpha-synuclein occurred equally in patients in early and late stages of the disease," Kathrin Doppler explains. She pointed out that this was unrelated to the course of the disease.

Identical changes in the skin and in the brain

The scientists most frequently encountered alpha-synuclein in skin biopsies from the back of patients. They also registered a decreased number of nerve fibres in patients with Parkinson's disease compared to the healthy controls. They reported that the types of nerve fibres affected were similar to those in the brain of PD patients. The scientists take this as a promising sign that "the changes in the skin of PD patients are reflective of features of brain pathology, which could render it a useful tool for pathogenetic studies".

In a follow-up study, the Würzburg scientists are characterising the cutaneous alpha-synuclein depositions in greater detail to learn more about their effects on the function and survival of nerve fibres. In doing so, they hope to shed more light on the disease mechanism which is still largely unknown.

The work was funded by the First-time Applicant Program of the Interdisciplinary Center for Clinical Research (IZKF) of the University Hospital of Würzburg.

"Cutaneous neuropathy in Parkinson’s disease: a window into brain pathology" Kathrin Doppler, Sönke Ebert, Nurcan Üçeyler, Claudia Trenkwalder, Jens Ebentheuer, Jens Volkmann, Claudia Sommer; published online on 04 Mai 2014, doi: 10.1007/s00401-014-1284-0

Contact

Dr. Kathrin Doppler, T: +49-931-201-23787, Doppler_k@ukw.de
Prof. Dr. Claudia Sommer, sommer@uni-wuerzburg.de

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht The balancing act: An enzyme that links endocytosis to membrane recycling
07.12.2016 | National Centre for Biological Sciences

nachricht Transforming plant cells from generalists to specialists
07.12.2016 | Duke University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Significantly more productivity in USP lasers

In recent years, lasers with ultrashort pulses (USP) down to the femtosecond range have become established on an industrial scale. They could advance some applications with the much-lauded “cold ablation” – if that meant they would then achieve more throughput. A new generation of process engineering that will address this issue in particular will be discussed at the “4th UKP Workshop – Ultrafast Laser Technology” in April 2017.

Even back in the 1990s, scientists were comparing materials processing with nanosecond, picosecond and femtosesecond pulses. The result was surprising:...

Im Focus: Shape matters when light meets atom

Mapping the interaction of a single atom with a single photon may inform design of quantum devices

Have you ever wondered how you see the world? Vision is about photons of light, which are packets of energy, interacting with the atoms or molecules in what...

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

NTU scientists build new ultrasound device using 3-D printing technology

07.12.2016 | Health and Medicine

The balancing act: An enzyme that links endocytosis to membrane recycling

07.12.2016 | Life Sciences

How to turn white fat brown

07.12.2016 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>