Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The skin as a window to the brain

12.05.2014

Diagnosing Parkinson's disease is difficult, especially in the early stage of the disease. Neurologists of the University Hospital of Würzburg have now shown a way that could be beneficial to both early diagnosis and research. They found the key in the patients' skin.

A definite diagnosis is only possible post-mortem. Only then can pathologists examine the brain for typical depositions of the protein alpha-synuclein in the nerve cells of specific brain regions and thus reliably diagnose Parkinson's disease (PD).

Before that, physicians have to rely on a number of typical symptoms which are indicative of Parkinson's disease. The diagnosis is obvious in patients who move slowly, have a limited range of motion, stiff muscles and tremors at rest or have difficulty keeping their balance. But these symptoms only occur in the advanced stage of the disease; until then, the diagnosis remains extremely uncertain.

Depositions in cutaneous nerve fibres

This could change in the foreseeable future: Neurologists from Würzburg found out that in about half of the PD patients the alpha-synuclein depositions are also detectable in the small nerve fibres of the skin. Since the skin is much easier to access than the brain, Professor Claudia Sommer and her team are hopeful to reliably diagnose the disease pre-mortem in the future by means of a simple skin biopsy. And what is more, the scientists believe that this will allow them to investigate the disease mechanism in the skin, which is still largely unknown. The results of the study have just been published in the magazine Acta Neuropathologica.

The study

31 PD patients from the neurological department of the University Hospital of Würzburg and from the Paracelsus Elena Hospital in Kassel and 35 healthy controls participated in the study. Small skin biopsies were taken from all participants at the lower and upper leg, index finger and back. Additionally, the scientists conducted a number of further examinations to exclude other causes of nerve damage.

"We identified phosphorylated alpha-synuclein in the histological samples of 16 PD patients but in none of the controls," first-time author Kathrin Doppler sums up the study results. In other words: Whereas about every second PD patient exhibited the typical depositions, they did not occur in any of the healthy controls.

The scientists made another finding that is interesting for an early diagnosis: "Alpha-synuclein occurred equally in patients in early and late stages of the disease," Kathrin Doppler explains. She pointed out that this was unrelated to the course of the disease.

Identical changes in the skin and in the brain

The scientists most frequently encountered alpha-synuclein in skin biopsies from the back of patients. They also registered a decreased number of nerve fibres in patients with Parkinson's disease compared to the healthy controls. They reported that the types of nerve fibres affected were similar to those in the brain of PD patients. The scientists take this as a promising sign that "the changes in the skin of PD patients are reflective of features of brain pathology, which could render it a useful tool for pathogenetic studies".

In a follow-up study, the Würzburg scientists are characterising the cutaneous alpha-synuclein depositions in greater detail to learn more about their effects on the function and survival of nerve fibres. In doing so, they hope to shed more light on the disease mechanism which is still largely unknown.

The work was funded by the First-time Applicant Program of the Interdisciplinary Center for Clinical Research (IZKF) of the University Hospital of Würzburg.

"Cutaneous neuropathy in Parkinson’s disease: a window into brain pathology" Kathrin Doppler, Sönke Ebert, Nurcan Üçeyler, Claudia Trenkwalder, Jens Ebentheuer, Jens Volkmann, Claudia Sommer; published online on 04 Mai 2014, doi: 10.1007/s00401-014-1284-0

Contact

Dr. Kathrin Doppler, T: +49-931-201-23787, Doppler_k@ukw.de
Prof. Dr. Claudia Sommer, sommer@uni-wuerzburg.de

Gunnar Bartsch | idw - Informationsdienst Wissenschaft
Further information:
http://www.uni-wuerzburg.de

More articles from Life Sciences:

nachricht Scientists spin artificial silk from whey protein
24.01.2017 | Deutsches Elektronen-Synchrotron DESY

nachricht Choreographing the microRNA-target dance
24.01.2017 | UT Southwestern Medical Center

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Scientists spin artificial silk from whey protein

X-ray study throws light on key process for production

A Swedish-German team of researchers has cleared up a key process for the artificial production of silk. With the help of the intense X-rays from DESY's...

Im Focus: Quantum optical sensor for the first time tested in space – with a laser system from Berlin

For the first time ever, a cloud of ultra-cold atoms has been successfully created in space on board of a sounding rocket. The MAIUS mission demonstrates that quantum optical sensors can be operated even in harsh environments like space – a prerequi-site for finding answers to the most challenging questions of fundamental physics and an important innovation driver for everyday applications.

According to Albert Einstein's Equivalence Principle, all bodies are accelerated at the same rate by the Earth's gravity, regardless of their properties. This...

Im Focus: Traffic jam in empty space

New success for Konstanz physicists in studying the quantum vacuum

An important step towards a completely new experimental access to quantum physics has been made at University of Konstanz. The team of scientists headed by...

Im Focus: How gut bacteria can make us ill

HZI researchers decipher infection mechanisms of Yersinia and immune responses of the host

Yersiniae cause severe intestinal infections. Studies using Yersinia pseudotuberculosis as a model organism aim to elucidate the infection mechanisms of these...

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Sustainable Water use in Agriculture in Eastern Europe and Central Asia

19.01.2017 | Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

 
Latest News

Breaking the optical bandwidth record of stable pulsed lasers

24.01.2017 | Physics and Astronomy

Choreographing the microRNA-target dance

24.01.2017 | Life Sciences

Spanish scientists create a 3-D bioprinter to print human skin

24.01.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>