Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The great feeding-frenzy: Species-rich food webs produce biomass more efficiently

05.10.2016

Researchers at the Senckenberg have discovered a feedback in food webs: species-rich ecosystems favor large, heavy animals. Even though this increases the amount of plants consumed, the plant biomass remains approximately at the same level as in species-poor ecosystems. This is due to the fact that in species-rich ecosystems, plant communities develop whose growth is more energetically efficient. The extent of biomass production in species-rich ecosystems is more stable and thereby predictable whereas species loss leads to unpredictable deficiencies, which would have to be compensated by humans, according to the paper, published today in “Nature Communications.”

On a daily basis, ecosystems reflect the maxim “Eat or be eaten” on a large scale. Plants form the basis of the food chains and are consumed by herbivores, which in turn serve as prey for the carnivores. And even these carnivores may fall victim to larger animals.


Food webs are made up of many dynamic feeding relationships; for example herbivore aphids feed on Ground Elder and are themselves eaten by hoverfly larvae. Ants, being larger than th

Copyright: Bernhard Seifert

Many of these predators near the top of the food chain are generalists; some will occasionally also eat plant material. This leads to the establishment of dense food webs, which contain numerous complex feeding relationships. But what happens when the animal diversity decreases?

A team around Dr. Florian Schneider from the Senckenberg Research Center for Biodiversity and Climate developed a new mathematical model that computes these very connections. “Using a computer, we simulated 20,000 ecosystems and the feeding processes that occur in each of them; from ecosystems that only contain a few species of animals and plant to systems with more than one hundred species.

In the beginning, it is still open which species and what number of individuals of each animal and plant species will survive until the end. A species’ body mass is the decisive factor, since it not only determines the amount of food (in animals) and the metabolism, but in particular the feeding preference, as well,” explains Schneider.

Despite an increase in herbivores, the plants’ biomass production remains stable

The results are surprising, for even in the presence of many different herbivorous animals, plants produced the same amount of biomass as in simulations with a low diversity of herbivore species. This was the case even though with increasing animal species diversity, both the amount of plants consumed as well as the intra-guild predation increased. This reconciles two previously opposing schools of thought.

It was assumed that high animal diversity generates positive effects as the dominant consumption of animal prey lessens the pressure on plant biomass, or they are more exploitative on plants, since the numerous different animal species, due to their various preferences, consume more plant species.

Species loss favors lightweights

In the model, both scenarios occur simultaneously because changes in the number of species also lead to changes in the composition of the species communities. When the overall number of animal species is lower, this favors smaller species with a lower body mass. Species-rich ecosystems, on the other hand, tend to be profitable for larger animals at the top of the food chain. “Overall, the total weight of animals in species-rich ecosystems is therefore higher than in species-poor ecosystems,” says Schneider. “Moreover, species-rich ecosystems contain a higher number of slow-growing, larger plants.”

Plants regrow more efficiently in species-rich ecosystems

This is efficient, since compared to smaller species, larger plants use less energy during the growth process, e.g., through respiration. Therefore, the more species-rich an animal community is, the more energetically efficient is the plants’ biomass production. The increased loss of biomass to consumption by larger animals is thus compensated by a reduction in plant community metabolism. This enables plants to maintain their level of biomass at an approximately equal level in species-poor as well as species-rich ecosystems.

Species extinction makes biomass production harder to predict

However not all is well in the end because human-induced species loss caused impacts the predictability of biomass production. “Our simulations show that species-rich ecosystems produce biomass at a relatively stable, predictable level. In species-poor ecosystems, on the other hand, two scenarios are likely; i.e., much more or much less biomass is produced. In many ways, the well-being of humans depends on the reliability of biomass production. Species richness therefore leads to greater security,” Schneider sums up.

Contact

Dr. Florian D. Schneider
Senckenberg Biodiversity and Climate Research Centre
Tel. +49 (0)69 7542 1914
Fd.schneider@senckenberg.de

Sabine Wendler
Press officer
Senckenberg Biodiversity and Climate Research Centre
Tel. +49 (0)69 7542 1818
pressestelle@senckenberg.de

Publication

Schneider, Florian D., Brose, U., Rall, B.C. and Guill, C. (2016): Animal diversity and ecosystem functioning in dynamic food webs, Nature Communications. Doi: 10.1038/ncomms12718

Press images may be used at no cost for editorial reporting, provided that the original author’s name is published, as well. The images may only be passed on to third parties in the context of current reporting.

The press release and images are available for download at www.senckenberg.de/presse

To study and understand nature with its limitless diversity of living creatures and to preserve and manage it in a sustainable fashion as the basis of life for future generations – this has been the goal of the Senckenberg Gesellschaft für Naturforschung (Senckenberg Nature Research Society) for almost 200 years. This integrative “geobiodiversity research” and the dissemination of research and science are among Senckenberg’s main tasks. Three nature museums in Frankfurt, Görlitz and Dresden display the diversity of life and the earth’s development over millions of years. The Senckenberg Nature Research Society is a member of the Leibniz Association. The Senckenberg Nature Museum in Frankfurt am Main is supported by the City of Frankfurt am Main as well as numerous other partners. Additional information can be found at www.senckenberg.de 

2016 is the Leibniz year. On the occasion of the 370th birthday and the 300-year death anniversary of polymath Gottfried Wilhelm Leibniz (*7/1/1646 in Leipzig, † 11/14/1716 in Hanover), the Leibniz Association is organizing an extensive topical year. Under the title “The best of all possible worlds” – a Leibniz quote – it brings into focus the diversity and timeliness of the subject matter currently studied by the scientists at the 88 Leibniz institutions across the Federal Republic of Germany. www.bestewelten.de

Sabine Wendler | Senckenberg Forschungsinstitut und Naturmuseen

More articles from Life Sciences:

nachricht Bare bones: Making bones transparent
27.04.2017 | California Institute of Technology

nachricht Link Discovered between Immune System, Brain Structure and Memory
26.04.2017 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

Bare bones: Making bones transparent

27.04.2017 | Life Sciences

Study offers new theoretical approach to describing non-equilibrium phase transitions

27.04.2017 | Physics and Astronomy

From volcano's slope, NASA instrument looks sky high and to the future

27.04.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>