Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


The great feeding-frenzy: Species-rich food webs produce biomass more efficiently


Researchers at the Senckenberg have discovered a feedback in food webs: species-rich ecosystems favor large, heavy animals. Even though this increases the amount of plants consumed, the plant biomass remains approximately at the same level as in species-poor ecosystems. This is due to the fact that in species-rich ecosystems, plant communities develop whose growth is more energetically efficient. The extent of biomass production in species-rich ecosystems is more stable and thereby predictable whereas species loss leads to unpredictable deficiencies, which would have to be compensated by humans, according to the paper, published today in “Nature Communications.”

On a daily basis, ecosystems reflect the maxim “Eat or be eaten” on a large scale. Plants form the basis of the food chains and are consumed by herbivores, which in turn serve as prey for the carnivores. And even these carnivores may fall victim to larger animals.

Food webs are made up of many dynamic feeding relationships; for example herbivore aphids feed on Ground Elder and are themselves eaten by hoverfly larvae. Ants, being larger than th

Copyright: Bernhard Seifert

Many of these predators near the top of the food chain are generalists; some will occasionally also eat plant material. This leads to the establishment of dense food webs, which contain numerous complex feeding relationships. But what happens when the animal diversity decreases?

A team around Dr. Florian Schneider from the Senckenberg Research Center for Biodiversity and Climate developed a new mathematical model that computes these very connections. “Using a computer, we simulated 20,000 ecosystems and the feeding processes that occur in each of them; from ecosystems that only contain a few species of animals and plant to systems with more than one hundred species.

In the beginning, it is still open which species and what number of individuals of each animal and plant species will survive until the end. A species’ body mass is the decisive factor, since it not only determines the amount of food (in animals) and the metabolism, but in particular the feeding preference, as well,” explains Schneider.

Despite an increase in herbivores, the plants’ biomass production remains stable

The results are surprising, for even in the presence of many different herbivorous animals, plants produced the same amount of biomass as in simulations with a low diversity of herbivore species. This was the case even though with increasing animal species diversity, both the amount of plants consumed as well as the intra-guild predation increased. This reconciles two previously opposing schools of thought.

It was assumed that high animal diversity generates positive effects as the dominant consumption of animal prey lessens the pressure on plant biomass, or they are more exploitative on plants, since the numerous different animal species, due to their various preferences, consume more plant species.

Species loss favors lightweights

In the model, both scenarios occur simultaneously because changes in the number of species also lead to changes in the composition of the species communities. When the overall number of animal species is lower, this favors smaller species with a lower body mass. Species-rich ecosystems, on the other hand, tend to be profitable for larger animals at the top of the food chain. “Overall, the total weight of animals in species-rich ecosystems is therefore higher than in species-poor ecosystems,” says Schneider. “Moreover, species-rich ecosystems contain a higher number of slow-growing, larger plants.”

Plants regrow more efficiently in species-rich ecosystems

This is efficient, since compared to smaller species, larger plants use less energy during the growth process, e.g., through respiration. Therefore, the more species-rich an animal community is, the more energetically efficient is the plants’ biomass production. The increased loss of biomass to consumption by larger animals is thus compensated by a reduction in plant community metabolism. This enables plants to maintain their level of biomass at an approximately equal level in species-poor as well as species-rich ecosystems.

Species extinction makes biomass production harder to predict

However not all is well in the end because human-induced species loss caused impacts the predictability of biomass production. “Our simulations show that species-rich ecosystems produce biomass at a relatively stable, predictable level. In species-poor ecosystems, on the other hand, two scenarios are likely; i.e., much more or much less biomass is produced. In many ways, the well-being of humans depends on the reliability of biomass production. Species richness therefore leads to greater security,” Schneider sums up.


Dr. Florian D. Schneider
Senckenberg Biodiversity and Climate Research Centre
Tel. +49 (0)69 7542 1914

Sabine Wendler
Press officer
Senckenberg Biodiversity and Climate Research Centre
Tel. +49 (0)69 7542 1818


Schneider, Florian D., Brose, U., Rall, B.C. and Guill, C. (2016): Animal diversity and ecosystem functioning in dynamic food webs, Nature Communications. Doi: 10.1038/ncomms12718

Press images may be used at no cost for editorial reporting, provided that the original author’s name is published, as well. The images may only be passed on to third parties in the context of current reporting.

The press release and images are available for download at

To study and understand nature with its limitless diversity of living creatures and to preserve and manage it in a sustainable fashion as the basis of life for future generations – this has been the goal of the Senckenberg Gesellschaft für Naturforschung (Senckenberg Nature Research Society) for almost 200 years. This integrative “geobiodiversity research” and the dissemination of research and science are among Senckenberg’s main tasks. Three nature museums in Frankfurt, Görlitz and Dresden display the diversity of life and the earth’s development over millions of years. The Senckenberg Nature Research Society is a member of the Leibniz Association. The Senckenberg Nature Museum in Frankfurt am Main is supported by the City of Frankfurt am Main as well as numerous other partners. Additional information can be found at 

2016 is the Leibniz year. On the occasion of the 370th birthday and the 300-year death anniversary of polymath Gottfried Wilhelm Leibniz (*7/1/1646 in Leipzig, † 11/14/1716 in Hanover), the Leibniz Association is organizing an extensive topical year. Under the title “The best of all possible worlds” – a Leibniz quote – it brings into focus the diversity and timeliness of the subject matter currently studied by the scientists at the 88 Leibniz institutions across the Federal Republic of Germany.

Sabine Wendler | Senckenberg Forschungsinstitut und Naturmuseen

More articles from Life Sciences:

nachricht Make way for the mini flying machines
21.03.2018 | American Chemical Society

nachricht New 4-D printer could reshape the world we live in
21.03.2018 | American Chemical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Researchers at Fraunhofer monitor re-entry of Chinese space station Tiangong-1

In just a few weeks from now, the Chinese space station Tiangong-1 will re-enter the Earth's atmosphere where it will to a large extent burn up. It is possible that some debris will reach the Earth's surface. Tiangong-1 is orbiting the Earth uncontrolled at a speed of approx. 29,000 km/h.Currently the prognosis relating to the time of impact currently lies within a window of several days. The scientists at Fraunhofer FHR have already been monitoring Tiangong-1 for a number of weeks with their TIRA system, one of the most powerful space observation radars in the world, with a view to supporting the German Space Situational Awareness Center and the ESA with their re-entry forecasts.

Following the loss of radio contact with Tiangong-1 in 2016 and due to the low orbital height, it is now inevitable that the Chinese space station will...

Im Focus: Alliance „OLED Licht Forum“ – Key partner for OLED lighting solutions

Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP, provider of research and development services for OLED lighting solutions, announces the founding of the “OLED Licht Forum” and presents latest OLED design and lighting solutions during light+building, from March 18th – 23rd, 2018 in Frankfurt a.M./Germany, at booth no. F91 in Hall 4.0.

They are united in their passion for OLED (organic light emitting diodes) lighting with all of its unique facets and application possibilities. Thus experts in...

Im Focus: Mars' oceans formed early, possibly aided by massive volcanic eruptions

Oceans formed before Tharsis and evolved together, shaping climate history of Mars

A new scenario seeking to explain how Mars' putative oceans came and went over the last 4 billion years implies that the oceans formed several hundred million...

Im Focus: Tiny implants for cells are functional in vivo

For the first time, an interdisciplinary team from the University of Basel has succeeded in integrating artificial organelles into the cells of live zebrafish embryos. This innovative approach using artificial organelles as cellular implants offers new potential in treating a range of diseases, as the authors report in an article published in Nature Communications.

In the cells of higher organisms, organelles such as the nucleus or mitochondria perform a range of complex functions necessary for life. In the networks of...

Im Focus: Locomotion control with photopigments

Researchers from Göttingen University discover additional function of opsins

Animal photoreceptors capture light with photopigments. Researchers from the University of Göttingen have now discovered that these photopigments fulfill an...

All Focus news of the innovation-report >>>



Industry & Economy
Event News

Virtual reality conference comes to Reutlingen

19.03.2018 | Event News

Ultrafast Wireless and Chip Design at the DATE Conference in Dresden

16.03.2018 | Event News

International Tinnitus Conference of the Tinnitus Research Initiative in Regensburg

13.03.2018 | Event News

Latest News

TRAPPIST-1 planets provide clues to the nature of habitable worlds

21.03.2018 | Physics and Astronomy

The search for dark matter widens

21.03.2018 | Materials Sciences

Natural enemies reduce pesticide use

21.03.2018 | Life Sciences

Science & Research
Overview of more VideoLinks >>>