Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The first genome of a coral reef fish

29.09.2016

A genome for the blacktail butterflyfish may illustrate how reef fish adapt to challenging conditions in the Red Sea.

Sequencing the genome of an organism allows scientists to investigate its unique genetic make-up, its evolutionary links to other creatures, and how it has adapted to its environment. Researchers at King Abdullah University of Science and Technology (KAUST), Saudi Arabia, have sequenced the first reef fish genome, the blacktail butterflyfish (Chaetodon austriacus), an iconic Red Sea species considered to be an ‘indicator’ species for coral health.


Researchers at KAUST have sequenced the genome of a coral reef fish from the Red Sea, the blacktail butterflyfish, for the first time.

Copyright : Tim Sheerman-Chase via Flickr

While genome sequences already exist for well-established model species such as the zebrafish, which is commonly used in medical research, there are no genomes publically available for natural populations of tropical reef fish. Michael Berumen, Joseph DiBattista, and a multidisciplinary team at KAUST, sought to fill this significant gap in fish genomic data.

“The blacktail butterflyfish has one of the most restricted ranges of any butterflyfish species, largely concentrated in the northern and central Red Sea,” explains DiBattista. “Therefore, it is likely to have developed unique genomic adaptations to this environment.”

Identifying these genetic mechanisms may also help predict how other marine organisms could adapt to challenging sea conditions in future.

The team faced a considerable task when it came to sequencing the new genome, partly because they had no reference genomes from closely-related fish to compare. They took portions of gill filaments from a wild butterflyfish and generated a mix of DNA fragments or ‘reads’.

“We then undertook a series of steps to figure out which reads connected with each other, and as a whole, how they overlapped,” explains Berumen. “Imagine trying to reconstruct a lengthy book from tiny segments consisting of a few hundred characters, each taken from a random part of that book. This very quickly becomes a computer science problem since it would be impossible to do it manually. Most fish genomes consist of around a billion base pairs, or a book with a billion characters in our analogy!”

Berumen sought the bioinformatics expertise of Manuel Aranda's group at KAUST’s Computational Bioscience Research Center. Once the team had assembled the genome, they analyzed it to ensure it made sense; for example, checking for the existence of genes previously identified in other organisms.

Their final, high-quality genome includes 28,926 protein-coding genes. The team hope their genome will enable studies on the co-evolution of reef fish species and comparisons of gene sequences between closely-related fish across the Indo-Pacific region.

The genome may also help stem trading in wild reef fish, because aquaculture specialists may eventually be able use the data to produce new, aquarium-tolerant species to fulfill the market demand for decorative fish.

Associated links

Journal information

DiBattista, J. D., Wang, X., Saenz-Agudelo, P., Piatek, M. J., Aranda, M. & Berumen, M. L. Draft genome of an iconic Red Sea reef fish, the blacktail butterflyfish (Chaetodon austriacus): current status and its characteristics. Molecular Ecology Resources early online (2016).

Michelle D'Antoni | Research SEA
Further information:
http://www.researchsea.com

More articles from Life Sciences:

nachricht Single-stranded DNA and RNA origami go live
15.12.2017 | Wyss Institute for Biologically Inspired Engineering at Harvard

nachricht New antbird species discovered in Peru by LSU ornithologists
15.12.2017 | Louisiana State University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Error-free into the Quantum Computer Age

A study carried out by an international team of researchers and published in the journal Physical Review X shows that ion-trap technologies available today are suitable for building large-scale quantum computers. The scientists introduce trapped-ion quantum error correction protocols that detect and correct processing errors.

In order to reach their full potential, today’s quantum computer prototypes have to meet specific criteria: First, they have to be made bigger, which means...

Im Focus: Search for planets with Carmenes successful

German and Spanish researchers plan, build and use modern spectrograph

Since 2016, German and Spanish researchers, among them scientists from the University of Göttingen, have been hunting for exoplanets with the “Carmenes”...

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

Single-photon detector can count to 4

18.12.2017 | Information Technology

Quantum memory with record-breaking capacity based on laser-cooled atoms

18.12.2017 | Physics and Astronomy

How much soil goes down the drain -- New data on soil lost due to water

18.12.2017 | Agricultural and Forestry Science

VideoLinks
B2B-VideoLinks
More VideoLinks >>>