Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

The brain’s defense cells live longer than expected

28.08.2017

In mice, microglia may persist the entire lifespan of the animal. The cells’ lifetime may be linked to their role in immune memory and neurodegenerative diseases

Eliminating pathogens and cellular waste—this is an important task of microglia cells, the immune cells of the brain. They belong to the group of non-neural brain cells that support the normal function of nerve cells. A new study now shows that in mice these scavenger cells may live as long as the rodents themselves.


The scientists labelled individual microglial cells (in yellow). This allowed them to differentiate the cells from other microglia (in green) and to follow them over their lifespan in vivo.

Copyright: Petra Füger, 2017

The new finding comes from scientists at the Hertie Institute for Clinical Brain Research, the University of Tübingen, and the German Center for Neurodegenerative Diseases (DZNE). In an advance online publication of the journal Nature Neuroscience the scientists followed individual microglia cells under the microscope in vivo.

The unexpectedly long lifespan of microglia indicates further functions these cells may perform: “Their longevity allows them to learn and to age,” explains Professor Dr. Mathias Jucker. “This may enable them to form an immunological memory and contribute to the development of neurodegenerative diseases.”

Until now it has been unclear whether microglia cells can create a memory for pathogens similar to the one developed by immune cells in the rest of the body. This function ensures a faster and more efficient activation of the defense cells when a second contact is made. “If microglia cells lived only briefly, an immune memory would not make much sense. Now that we know this is not the case, the idea becomes well conceivable,” says co-corresponding author Dr. Angelos Skodras. In fact, there are first indications that an early stimulation of the brain’s immune system permanently changes the activity of the microglia cells.

In addition to this task, microglia have long been suspected of playing a role in the development of age-related neurological diseases. “An amazing finding in recent years is that most risk factors for Alzheimer's disease map to changes in genes that are active in microglia cells,” Jucker says. It remains unclear how the cells contribute to the development of the disease. However: “Aging and senescence of microglia may play a role—this requires a long life of the cells.”

In the healthy brain, the number of microglia remains more or less constant. However, until now scientists have been discussing whether microglia are short-lived cells that rapidly proliferate, or whether they are long-lived cells that rarely divide. Previous measurements were done only indirectly and led to contradictory results. In the present study, first author Dr. Petra Füger genetically labeled individual microglia in mice and directly observed the turnover of these cells using 2-photon imaging over many months in the mouse brain.

“As the outcome was completely open, we had a bet running in the department with predictions that ranged from a couple of months to more than a year,” Jucker recalls. In the end, half of the cells studied showed a calculated lifespan of up to 28 months, which corresponds to a mouse’s lifetime. “In our study, we were finally able to prove the longevity of microglia,” the authors conclude.

Original Publication:
Füger et al. (2017): Microglia turnover with aging and in an Alzheimer´s model via long-term in vivo single-cell imaging. Nature Neuroscience, advanced online publication
doi: 10.1038/nn.4631

Contact:
Prof. Dr. Mathias Jucker
Hertie Institute for Clinical Brain Research
University of Tübingen
Phone +49 7071 29- 86863
mathias.jucker[at]uni-tuebingen.de

Weitere Informationen:

https://www.hih-tuebingen.de Hertie Institute for Clinical Brain Research
https://www.uni-tuebingen.de University of Tübingen
https://www.dzne.de German Center for Neurodegenerative Diseases

Dr. Mareike Kardinal | idw - Informationsdienst Wissenschaft

More articles from Life Sciences:

nachricht More genes are active in high-performance maize
19.01.2018 | Rheinische Friedrich-Wilhelms-Universität Bonn

nachricht How plants see light
19.01.2018 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Artificial agent designs quantum experiments

On the way to an intelligent laboratory, physicists from Innsbruck and Vienna present an artificial agent that autonomously designs quantum experiments. In initial experiments, the system has independently (re)discovered experimental techniques that are nowadays standard in modern quantum optical laboratories. This shows how machines could play a more creative role in research in the future.

We carry smartphones in our pockets, the streets are dotted with semi-autonomous cars, but in the research laboratory experiments are still being designed by...

Im Focus: Scientists decipher key principle behind reaction of metalloenzymes

So-called pre-distorted states accelerate photochemical reactions too

What enables electrons to be transferred swiftly, for example during photosynthesis? An interdisciplinary team of researchers has worked out the details of how...

Im Focus: The first precise measurement of a single molecule's effective charge

For the first time, scientists have precisely measured the effective electrical charge of a single molecule in solution. This fundamental insight of an SNSF Professor could also pave the way for future medical diagnostics.

Electrical charge is one of the key properties that allows molecules to interact. Life itself depends on this phenomenon: many biological processes involve...

Im Focus: Paradigm shift in Paris: Encouraging an holistic view of laser machining

At the JEC World Composite Show in Paris in March 2018, the Fraunhofer Institute for Laser Technology ILT will be focusing on the latest trends and innovations in laser machining of composites. Among other things, researchers at the booth shared with the Aachen Center for Integrative Lightweight Production (AZL) will demonstrate how lasers can be used for joining, structuring, cutting and drilling composite materials.

No other industry has attracted as much public attention to composite materials as the automotive industry, which along with the aerospace industry is a driver...

Im Focus: Room-temperature multiferroic thin films and their properties

Scientists at Tokyo Institute of Technology (Tokyo Tech) and Tohoku University have developed high-quality GFO epitaxial films and systematically investigated their ferroelectric and ferromagnetic properties. They also demonstrated the room-temperature magnetocapacitance effects of these GFO thin films.

Multiferroic materials show magnetically driven ferroelectricity. They are attracting increasing attention because of their fascinating properties such as...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

10th International Symposium: “Advanced Battery Power – Kraftwerk Batterie” Münster, 10-11 April 2018

08.01.2018 | Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

 
Latest News

Let the good tubes roll

19.01.2018 | Materials Sciences

How cancer metastasis happens: Researchers reveal a key mechanism

19.01.2018 | Health and Medicine

Meteoritic stardust unlocks timing of supernova dust formation

19.01.2018 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>