Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Test for Germs

07.04.2011
Fluorescing DNAzymes detect metabolic products from bacteria

Germs in food, bioterrorism, drug-resistant bacteria and viruses—these are the problems of our time that make early detection of pathogens particularly important.

Whereas conventional methods are either slow or require complex instruments, Yingfu Li and a team at McMaster University in Hamilton (Ontario, Canada), additionally supported by the Sentinel Bioactive Paper Network, have now developed an especially simple, universal fluorescence test system that specifically and rapidly detects germs by means of their metabolic products. As the researchers report in the journal Angewandte Chemie, It isn’t even necessary to know which substance the test is reacting to.

Traditionally germs have been detected through microbiological methods, which are very precise but can take days or weeks. PCR- or antibody-based methods are rapid but require many steps and special equipment. “We were motivated to develop an especially simple, but very rapid and precise method,” says Li. “It must also be universal, meaning that it should be possible to develop tests for any desired germ using the same principle.”

... more about:
»Angewandte Chemie »DNA »DNA molecule »DNAzyme »E. coli »RNA »germs

“When a pathogen is metabolically active and multiplying in a given medium, it releases many substances into this environment. These are what we want to use,” says Li. The idea is to produce DNAzymes that react to a pathogen-specific product. A DNAzyme is a synthetic one-stranded DNA molecule with catalytic activity. Making a large pool of DNA molecules with random sequences and subjecting these to repeated selection and amplification steps allows for the development of molecules with the desired property.

At the core of the conceptual DNAzyme is a single RNA nucleotide. To its right and left are a fluorescing dye and a quencher. A quencher is a molecule that switches off the fluorescence of a dye when it is nearby. The researchers developed a DNAzyme that binds to a specific metabolic product from E. coli bacteria, which causes the DNAzyme to change its shape. In this altered form, the DNAzyme has RNA-splitting capability and cuts its own strand at the location of the RNA nucleotide. This separates the quencher from the dye, which begins to fluoresce. The fluorescence indicates that E. coli is present in the sample. This DNAzyme does not react to other bacteria.

“Through targeted selection, it should be possible to find a specific DNAzyme for any desired germ,” says Li. “It is not necessary to know what the metabolic product is, or to isolate it from the sample.” By using a common cell culture step, it is possible for the pathogens in a sample to multiply before the test, which allows for detection of a single original cell.

Author: Yingfu Li, McMaster University, Ontario (Canada), http://www.science.mcmaster.ca/biochem/faculty/li/
Title: Fluorogenic DNAzyme Probes as Bacterial Indicators
Angewandte Chemie International Edition 2011, 50, No. 16, 3751–3754, Permalink to the article: http://dx.doi.org/10.1002/anie.201100477

Yingfu Li | Angewandte Chemie
Further information:
http://pressroom.angewandte.org
http://www.science.mcmaster.ca/biochem/faculty/li/

Further reports about: Angewandte Chemie DNA DNA molecule DNAzyme E. coli RNA germs

More articles from Life Sciences:

nachricht Discovery of a Key Regulatory Gene in Cardiac Valve Formation
24.05.2017 | Universität Basel

nachricht Carcinogenic soot particles from GDI engines
24.05.2017 | Empa - Eidgenössische Materialprüfungs- und Forschungsanstalt

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A quantum walk of photons

Physicists from the University of Würzburg are capable of generating identical looking single light particles at the push of a button. Two new studies now demonstrate the potential this method holds.

The quantum computer has fuelled the imagination of scientists for decades: It is based on fundamentally different phenomena than a conventional computer....

Im Focus: Turmoil in sluggish electrons’ existence

An international team of physicists has monitored the scattering behaviour of electrons in a non-conducting material in real-time. Their insights could be beneficial for radiotherapy.

We can refer to electrons in non-conducting materials as ‘sluggish’. Typically, they remain fixed in a location, deep inside an atomic composite. It is hence...

Im Focus: Wafer-thin Magnetic Materials Developed for Future Quantum Technologies

Two-dimensional magnetic structures are regarded as a promising material for new types of data storage, since the magnetic properties of individual molecular building blocks can be investigated and modified. For the first time, researchers have now produced a wafer-thin ferrimagnet, in which molecules with different magnetic centers arrange themselves on a gold surface to form a checkerboard pattern. Scientists at the Swiss Nanoscience Institute at the University of Basel and the Paul Scherrer Institute published their findings in the journal Nature Communications.

Ferrimagnets are composed of two centers which are magnetized at different strengths and point in opposing directions. Two-dimensional, quasi-flat ferrimagnets...

Im Focus: World's thinnest hologram paves path to new 3-D world

Nano-hologram paves way for integration of 3-D holography into everyday electronics

An Australian-Chinese research team has created the world's thinnest hologram, paving the way towards the integration of 3D holography into everyday...

Im Focus: Using graphene to create quantum bits

In the race to produce a quantum computer, a number of projects are seeking a way to create quantum bits -- or qubits -- that are stable, meaning they are not much affected by changes in their environment. This normally needs highly nonlinear non-dissipative elements capable of functioning at very low temperatures.

In pursuit of this goal, researchers at EPFL's Laboratory of Photonics and Quantum Measurements LPQM (STI/SB), have investigated a nonlinear graphene-based...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

AWK Aachen Machine Tool Colloquium 2017: Internet of Production for Agile Enterprises

23.05.2017 | Event News

Dortmund MST Conference presents Individualized Healthcare Solutions with micro and nanotechnology

22.05.2017 | Event News

 
Latest News

Physicists discover mechanism behind granular capillary effect

24.05.2017 | Physics and Astronomy

Measured for the first time: Direction of light waves changed by quantum effect

24.05.2017 | Physics and Astronomy

Marine Conservation: IASS Contributes to UN Ocean Conference in New York on 5-9 June

24.05.2017 | Event News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>