Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Temperature, humidity affect health benefits of green tea powders

19.05.2011
The beneficial compounds in green tea powders aren't as stable as once thought, according to a Purdue University study that will give industry guidelines on how to better store those powders.

"People drink green tea for health benefits, so they want the catechins to be present," said Lisa Mauer, a professor of food science. "The instant powder beverages are becoming more popular for consumers, and it's important to know how storage can influence nutrition of your products."

Catechins are the source of antioxidants thought to fight heart disease, cancer, diabetes and other health problems. Green tea powders are often used as ingredients in products that are flavored like green tea or tout the health benefits of the tea. U.S. imports of green tea increased more than 600 percent from 1998 to 2007, according to the U.S. Department of Agriculture.

Mauer found that increased temperature ¨l and humidity, to a smaller degree ¨l speed catechin degradation. She said it had been believed that the powders were stable below the glass transition temperature, the temperature at which an amorphous solid changes from a rigid, glassy state to a rubbery, viscous state. In that rubbery state, compounds may start reacting with each other faster due to increased molecular mobility, leading to significant chemical degradation.

But Mauer's findings, reported in the early online version of the Journal of Agricultural and Food Chemistry, showed that green tea powder degrades at lower temperatures, even below the glass transition temperature.

"Tea powders are not infinitely stable below their glass transition temperature. They degrade more slowly below that temperature, but they can still degrade," Mauer said.

Catechin concentrations were tracked using high-performance liquid chromatography. The method involved dissolving the green tea powder into a solution, which then passed through a column. Compounds moved at different rates and could be measured.

More than 1,800 powder samples were stored at varying temperature and humidity combinations for up to 16 weeks and then measured for catechin loss. Those at the highest temperatures and humidities lost the most catechins.

From those results, models were built to predict the rates at which catechins would be lost at different storage conditions. Mauer said those in the food industry could use the models to predict the amount of catechins ¨l and the likely health benefits ¨l in green tea powder at the time it is used.

"Knowing what's happening to the ingredients is extremely important for understanding the quality of a food or beverage product," she said.

Mauer said she would next look at what the catechins become once they degrade and how those new compounds affect nutritional qualities.

The U.S. Department of Agriculture and the China Scholarship Council funded the research.

Abstract on the research in this release is available at: http://www.purdue.edu/newsroom/research/2011/110518MauerCatechins.html

Brian Wallheimer | EurekAlert!
Further information:
http://www.purdue.edu

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>