Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New Technology Shows Molecules and Cells in Action

06.02.2012
A photograph of a polar bear in captivity, no matter how sharp the resolution, can never reveal as much about behavior as footage of that polar bear in its natural habitat.

The behavior of cells and molecules can prove even more elusive. Limitations in biomedical imaging technologies have hampered attempts to understand cellular and molecular behavior, with biologists trying to envision dynamic processes through static snapshots.

Deborah Kelly, an assistant professor in the Virginia Tech Carilion Research Institute, has now developed a novel technology platform to peer closely into the world of cells and molecules within a native, liquid environment.

Kelly and colleagues have developed a way to isolate biological specimens in a flowing, liquid environment while enclosing those specimens in the high-vacuum system of a transmission electron microscope (TEM). The TEM liquid-flow holder, developed by Protochips Inc. of Raleigh, N.C., accommodates biological samples between two semiconductor microchips that are tightly sealed together. These chips form a microfluidic device smaller than a Tic Tac. This device, positioned at the tip of an EM specimen holder, permits liquid flow in and out of the holder. When these chips are coated with a special affinity biofilm that Kelly developed, they have the ability to capture cells and molecules rapidly and with high specificity. This system allows researchers to watch -- at unprecedented resolution -- biological processes as they occur, such as the interaction of a molecule with a receptor on a cell that triggers normal development or cancer.

"With this new technology, we can capture and view the native architecture of cells and their surface protein receptors while learning about their dynamic interactions, such as what happens when cells interact with pathogens or drugs," said Kelly. "We can now isolate cancer cells, for example, and view the early events of chemotherapy in action."

Kelly had previously worked with colleagues at Harvard Medical School to develop a way to capture protein machinery in a frozen environment. "But life moves," said Kelly. "It’s better if biological processes don’t have to be paused or frozen in order to be studied, but can be viewed in dynamic and life-sustaining liquid environments."

Kelly’s affinity capture device, in combination with high-resolution TEM, helps bridge the gap between cellular and molecular imaging, allowing researchers to achieve spatial resolution as high as two nanometers. "This device allows us to see new features on the surface of live cancer cells, providing new targets for drug therapy," Kelly said. "With this resolution, scientists may even be able to visualize disease processes as they unfold."

The research appears in the February issue of RSC Advances, an international journal of the Royal Society of Chemistry of London, in the article "The development of affinity capture devices -- a nanoscale purification platform for biological in situ transmission electron microscopy," by Katherine Degen, a biomedical engineering student at the University of Virginia; Madeline Dukes, an applications scientist at Protochips; Justin Tanner, a postdoctoral associate at the Virginia Tech Carilion Research Institute; and Kelly, the corresponding author. The link to the article is http://pubs.rsc.org/en/content/articlelanding/2012/ra/c2ra01163h

Paula Byron | Newswise Science News
Further information:
http://www.vt.edu

More articles from Life Sciences:

nachricht Multi-institutional collaboration uncovers how molecular machines assemble
02.12.2016 | Salk Institute

nachricht Fertilized egg cells trigger and monitor loss of sperm’s epigenetic memory
02.12.2016 | IMBA - Institut für Molekulare Biotechnologie der Österreichischen Akademie der Wissenschaften GmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Novel silicon etching technique crafts 3-D gradient refractive index micro-optics

A multi-institutional research collaboration has created a novel approach for fabricating three-dimensional micro-optics through the shape-defined formation of porous silicon (PSi), with broad impacts in integrated optoelectronics, imaging, and photovoltaics.

Working with colleagues at Stanford and The Dow Chemical Company, researchers at the University of Illinois at Urbana-Champaign fabricated 3-D birefringent...

Im Focus: Quantum Particles Form Droplets

In experiments with magnetic atoms conducted at extremely low temperatures, scientists have demonstrated a unique phase of matter: The atoms form a new type of quantum liquid or quantum droplet state. These so called quantum droplets may preserve their form in absence of external confinement because of quantum effects. The joint team of experimental physicists from Innsbruck and theoretical physicists from Hannover report on their findings in the journal Physical Review X.

“Our Quantum droplets are in the gas phase but they still drop like a rock,” explains experimental physicist Francesca Ferlaino when talking about the...

Im Focus: MADMAX: Max Planck Institute for Physics takes up axion research

The Max Planck Institute for Physics (MPP) is opening up a new research field. A workshop from November 21 - 22, 2016 will mark the start of activities for an innovative axion experiment. Axions are still only purely hypothetical particles. Their detection could solve two fundamental problems in particle physics: What dark matter consists of and why it has not yet been possible to directly observe a CP violation for the strong interaction.

The “MADMAX” project is the MPP’s commitment to axion research. Axions are so far only a theoretical prediction and are difficult to detect: on the one hand,...

Im Focus: Molecules change shape when wet

Broadband rotational spectroscopy unravels structural reshaping of isolated molecules in the gas phase to accommodate water

In two recent publications in the Journal of Chemical Physics and in the Journal of Physical Chemistry Letters, researchers around Melanie Schnell from the Max...

Im Focus: Fraunhofer ISE Develops Highly Compact, High Frequency DC/DC Converter for Aviation

The efficiency of power electronic systems is not solely dependent on electrical efficiency but also on weight, for example, in mobile systems. When the weight of relevant components and devices in airplanes, for instance, is reduced, fuel savings can be achieved and correspondingly greenhouse gas emissions decreased. New materials and components based on gallium nitride (GaN) can help to reduce weight and increase the efficiency. With these new materials, power electronic switches can be operated at higher switching frequency, resulting in higher power density and lower material costs.

Researchers at the Fraunhofer Institute for Solar Energy Systems ISE together with partners have investigated how these materials can be used to make power...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ICTM Conference 2017: Production technology for turbomachine manufacturing of the future

16.11.2016 | Event News

Innovation Day Laser Technology – Laser Additive Manufacturing

01.11.2016 | Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

 
Latest News

UTSA study describes new minimally invasive device to treat cancer and other illnesses

02.12.2016 | Medical Engineering

Plasma-zapping process could yield trans fat-free soybean oil product

02.12.2016 | Agricultural and Forestry Science

What do Netflix, Google and planetary systems have in common?

02.12.2016 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>