Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique reliably detects enzyme implicated in cancer and atherosclerosis

02.06.2010
An enzyme implicated in osteoporosis, arthritis, atherosclerosis and cancer metastasis – cathepsin K -- eluded reliable detection in laboratory experiments in the past. Now, a research team at the Georgia Institute of Technology has developed an assay that reliably detects and quantifies mature cathepsin K using a technique called gelatin zymography.

"This assay is important because researchers and pharmaceutical companies need a dependable method for sensitively detecting a small amount of cathepsin K and quantifying its activity to develop inhibitors to the enzyme that can fight the diseases while minimizing side effects," said Manu Platt, an assistant professor in the Wallace H. Coulter Department of Biomedical Engineering at Georgia Tech and Emory University.

Cathepsin K is required to maintain adequate calcium levels in the body, but it can be highly destructive because it has the ability to break down bone by degrading collagen and elastin.

Platt described the cathepsin K detection protocol in the June issue of the journal Analytical Biochemistry. This research was funded by new faculty support from Georgia Tech, and the Facilitating Academic Careers in Engineering and Science Scholars (FACES) and Summer Undergraduate Research in Engineering (SURE) programs at Georgia Tech.

The benefits of this assay over existing techniques are numerous, according to Platt. The major advantage of this protocol, he said, is the definitive knowledge that mature cathepsin K is being detected in cells and tissues -- and not its immature form or one of the other 10 cathepsin varieties: B, H, L, S, C, O, F, V, X or W.

Another advantage of this technique is that it is more sensitive and less expensive than current, less reliable techniques. The new assay allows cathepsin K to be detected in quantities as small as a few femtomoles and does not require antibodies, which can be expensive and cannot be used across different species.

"In our experiments we were able to detect mature cathepsin K activity in quantities as small as 3.45 femtomoles with zymography, which was 10 to 50 times more sensitive at detecting the enzyme than conventional Western blotting," noted Platt, who is also a Georgia Cancer Coalition Distinguished Cancer Scholar.

In addition, zymography allowed the researchers to measure the activity of the enzyme, whereas Western blotting just measured its presence.

To detect mature cathepsin K with gelatin zymography, Platt and Georgia Tech undergraduate student Weiwei Li first separated the enzymes present in cells by their molecular weights. This allowed them to distinguish the mature form of cathepsin K from the immature form and other cathepsin varieties.

Then, to verify the identity and presence of mature cathepsin K, the team activated the enzymes in the gel. They created the perfect acidic environment for cathepsin K to thrive and added inhibitors to block the activity of all enzymes except mature cathepsin K.

To validate the cathepsin K activity detected in the laboratory experiments, Platt and Georgia Tech undergraduate student Zachary Barry developed a computational kinetic model of the enzyme's activity. By solving a system of differential equations, they were able to calculate the concentrations of immature, mature and inactive cathepsin K present at all times during the experimental procedure.

"It is more challenging to work with enzymes than proteins because enzymes have to be functional, which means they have to be folded correctly to be active," explained Platt. "The model suggested that even after the slight denaturation and refolding required by our assay, the cathepsin K activity determined by zymography reflected what happens in nature and was not an artifact of the experimental procedure."

The model also predicted something unexpected -- the inactive form of cathepsin K commonly purchased from supply houses contained 20 percent mature enzyme.

"Cathepsins are implicated in many different diseases and the value of this assay is that it enables the measurement of previously undeterminable cathepsin activity in normal and diseased cells and tissues," noted Platt.

With this assay, Platt's team is currently investigating whether cathepsin K activity is different in the cells of individuals with metastatic and non-metastatic breast and prostate cancers, and the role of cathepsin K in cardiovascular diseases, such as stroke, in children with sickle cell anemia. They are also examining whether cathepsin K plays a role in the inflammation associated with HIV.

"This research should provide new information on a number of existing pathophysiological conditions where cathepsin K activity had been previously undetectable," added Platt.

Additional contributors to this work included Georgia Tech research technologists Catera Wilder and Philip Keegan; former graduate student Rebecca Deeds; and Joshua Cohen, a summer researcher at Georgia Tech and currently an undergraduate at the Massachusetts Institute of Technology.

John Toon | EurekAlert!
Further information:
http://www.gatech.edu

More articles from Life Sciences:

nachricht Researchers develop eco-friendly, 4-in-1 catalyst
25.04.2017 | Brown University

nachricht Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017
25.04.2017 | Laser Zentrum Hannover e.V.

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Making lightweight construction suitable for series production

More and more automobile companies are focusing on body parts made of carbon fiber reinforced plastics (CFRP). However, manufacturing and repair costs must be further reduced in order to make CFRP more economical in use. Together with the Volkswagen AG and five other partners in the project HolQueSt 3D, the Laser Zentrum Hannover e.V. (LZH) has developed laser processes for the automatic trimming, drilling and repair of three-dimensional components.

Automated manufacturing processes are the basis for ultimately establishing the series production of CFRP components. In the project HolQueSt 3D, the LZH has...

Im Focus: Wonder material? Novel nanotube structure strengthens thin films for flexible electronics

Reflecting the structure of composites found in nature and the ancient world, researchers at the University of Illinois at Urbana-Champaign have synthesized thin carbon nanotube (CNT) textiles that exhibit both high electrical conductivity and a level of toughness that is about fifty times higher than copper films, currently used in electronics.

"The structural robustness of thin metal films has significant importance for the reliable operation of smart skin and flexible electronics including...

Im Focus: Deep inside Galaxy M87

The nearby, giant radio galaxy M87 hosts a supermassive black hole (BH) and is well-known for its bright jet dominating the spectrum over ten orders of magnitude in frequency. Due to its proximity, jet prominence, and the large black hole mass, M87 is the best laboratory for investigating the formation, acceleration, and collimation of relativistic jets. A research team led by Silke Britzen from the Max Planck Institute for Radio Astronomy in Bonn, Germany, has found strong indication for turbulent processes connecting the accretion disk and the jet of that galaxy providing insights into the longstanding problem of the origin of astrophysical jets.

Supermassive black holes form some of the most enigmatic phenomena in astrophysics. Their enormous energy output is supposed to be generated by the...

Im Focus: A Quantum Low Pass for Photons

Physicists in Garching observe novel quantum effect that limits the number of emitted photons.

The probability to find a certain number of photons inside a laser pulse usually corresponds to a classical distribution of independent events, the so-called...

Im Focus: Microprocessors based on a layer of just three atoms

Microprocessors based on atomically thin materials hold the promise of the evolution of traditional processors as well as new applications in the field of flexible electronics. Now, a TU Wien research team led by Thomas Müller has made a breakthrough in this field as part of an ongoing research project.

Two-dimensional materials, or 2D materials for short, are extremely versatile, although – or often more precisely because – they are made up of just one or a...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Expert meeting “Health Business Connect” will connect international medical technology companies

20.04.2017 | Event News

Wenn der Computer das Gehirn austrickst

18.04.2017 | Event News

7th International Conference on Crystalline Silicon Photovoltaics in Freiburg on April 3-5, 2017

03.04.2017 | Event News

 
Latest News

NASA's Fermi catches gamma-ray flashes from tropical storms

25.04.2017 | Physics and Astronomy

Researchers invent process to make sustainable rubber, plastics

25.04.2017 | Materials Sciences

Transfecting cells gently – the LZH presents a GNOME prototype at the Labvolution 2017

25.04.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>