Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New technique invented to reveal pancreatic stem cells

08.04.2009
Wanted: stems cells. Just like those absconders chased by police all over the world, everybody can tell about their good deeds but none really knows how to recognize them.

Yet, as of today, thanks to a study just published in the Proceedings of the National Accademy of Sciences (PNAS) and authored by Nobel Laureate for Medicine in 2007 Mario Capecchi and by the researcher from the Catholic University of Rome Eugenio Sangiorgi, we now know how to reveal the stem cells camouflaged in the pancreas.

A stem cell is a cell capable of generating all the other cells constituting the same tissue (sometimes also called "adult stem cell").

"Reading the newspapers sometimes one would doubt it – says Sangiorgi – but we don't know many things about stem cells. It might look odd, but for instance we don't have a method to distinguish a priori between a stem cell and any other cell in the same tissue. We can only infer that a cell really is a stem cell by observing its behaviour".

In other words, when a researcher encounters a tissue, it's not immediately possible to identify with certainty and thus isolate a stem cell. In some case, like in the meadows, we now know where they are located and how to single them out – and hence we have been capable of successful life saving transplants for many years. But in the case of the pancreas, as in that of many other tissues, until some years ago we doubted that these special cells were even present there.

"Together with Professor Capecchi, we had already designed in the past a novel way to mark the stem cells in a tissue: a sort of little flag, capable of helping us to effectively label the cells we were looking for", explains Sangiorgi. In order to achieve this, Capecchi and Sangiorgi used a molecular switch, that is a piece of DNA, which activates itself once the mouse under scrutiny takes a special drug. When the switch is "on", a special fluorescent protein is produced (and, as a matter of fact, the study about this type of proteins won the Nobel Prize in Chemistry last October). The luminous cells are indeed the long-sought stem cells.

"In order to understand that these are really stem cells, we need only to wait", comments Sangiorgi. "A normal cell is sooner or later destined to die. A stem cell, instead, retains its capacity to renew itself and replicate. Thus, if we can still observe, many months later, that a cell is still alive, that means it is indeed a stem cell – or a cell derived directly from the division of a stem cell".

In the newly published article, Sangiorgi and Capecchi have shown with their technique that a particular subset of the pancreatic cells, the so-called acinar cells, are indeed stem cells. The truly interesting aspect of their results is that these cells also produce important digestive enzymes.

"So far, a stem cell was really looked upon as a sort of General, in charge of all the other cells, but really doing nothing: an undifferentiated cell, but with no specific task other than generating new tissue. Acinar cells, on the other hand, despite being proved stem cells, have a well defined task in the pancreas. They are like soldiers doing their job, but also capable – when necessary – of taking over the reins of the government", tells Sangiorgi with a metaphor.

The work of Capecchi and Sangiorgi paves the way to an extension of the definition of the stem cell, which will lead to a more detailed study on the proliferation mechanisms at the root of the success of these cells – and of their potential danger.

"Thanks to their extraordinary reproductive power – Sangiorgi, in fact, explains – these cells might even turn out to be carcinogenic. But if we are capable of constructing an effective instrument like ours in order to isolate and study them even in other organs, we can study their properties and give many answers about the way they work. One of the things we would like to understand is if also in vivo these types of cells – somehow eternal – are more tumour-sensitive – for instance because they tend to accumulate all the potential environmental risk factors throughout their very long life".

Eugenio Sangiorgi has been collaborating with Mario Capecchi for many years: "I already admired him a great deal before he won the Nobel Prize", he says. "The nicest thing about him is that – even at 72 – he keeps working in active research and continues being as enthusiastic as a child, always full of new ideas".

Eugenio Sangiorgi | EurekAlert!
Further information:
http://www.unicatt.it

More articles from Life Sciences:

nachricht The birth of a new protein
20.10.2017 | University of Arizona

nachricht Building New Moss Factories
20.10.2017 | Albert-Ludwigs-Universität Freiburg im Breisgau

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Neutron star merger directly observed for the first time

University of Maryland researchers contribute to historic detection of gravitational waves and light created by event

On August 17, 2017, at 12:41:04 UTC, scientists made the first direct observation of a merger between two neutron stars--the dense, collapsed cores that remain...

Im Focus: Breaking: the first light from two neutron stars merging

Seven new papers describe the first-ever detection of light from a gravitational wave source. The event, caused by two neutron stars colliding and merging together, was dubbed GW170817 because it sent ripples through space-time that reached Earth on 2017 August 17. Around the world, hundreds of excited astronomers mobilized quickly and were able to observe the event using numerous telescopes, providing a wealth of new data.

Previous detections of gravitational waves have all involved the merger of two black holes, a feat that won the 2017 Nobel Prize in Physics earlier this month....

Im Focus: Smart sensors for efficient processes

Material defects in end products can quickly result in failures in many areas of industry, and have a massive impact on the safe use of their products. This is why, in the field of quality assurance, intelligent, nondestructive sensor systems play a key role. They allow testing components and parts in a rapid and cost-efficient manner without destroying the actual product or changing its surface. Experts from the Fraunhofer IZFP in Saarbrücken will be presenting two exhibits at the Blechexpo in Stuttgart from 7–10 November 2017 that allow fast, reliable, and automated characterization of materials and detection of defects (Hall 5, Booth 5306).

When quality testing uses time-consuming destructive test methods, it can result in enormous costs due to damaging or destroying the products. And given that...

Im Focus: Cold molecules on collision course

Using a new cooling technique MPQ scientists succeed at observing collisions in a dense beam of cold and slow dipolar molecules.

How do chemical reactions proceed at extremely low temperatures? The answer requires the investigation of molecular samples that are cold, dense, and slow at...

Im Focus: Shrinking the proton again!

Scientists from the Max Planck Institute of Quantum Optics, using high precision laser spectroscopy of atomic hydrogen, confirm the surprisingly small value of the proton radius determined from muonic hydrogen.

It was one of the breakthroughs of the year 2010: Laser spectroscopy of muonic hydrogen resulted in a value for the proton charge radius that was significantly...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

ASEAN Member States discuss the future role of renewable energy

17.10.2017 | Event News

World Health Summit 2017: International experts set the course for the future of Global Health

10.10.2017 | Event News

Climate Engineering Conference 2017 Opens in Berlin

10.10.2017 | Event News

 
Latest News

Terahertz spectroscopy goes nano

20.10.2017 | Information Technology

Strange but true: Turning a material upside down can sometimes make it softer

20.10.2017 | Materials Sciences

NRL clarifies valley polarization for electronic and optoelectronic technologies

20.10.2017 | Interdisciplinary Research

VideoLinks
B2B-VideoLinks
More VideoLinks >>>