Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Team of researchers finds possible new genetic risk for Alzheimer's disease

24.09.2010
Researchers have identified a gene that appears to increase a person's risk of developing late-onset Alzheimer's disease, the most common form of the disease. The gene, abbreviated as MTHFD1L, is on chromosome six, and was identified in a genome-wide association study. Details are published September 23 in the journal PLoS Genetics.

The collaborative team of researchers was led by Margaret A. Pericak-Vance, PhD, Director of the John P. Hussman Institute for Human Genomics at the University of Miami Miller School of Medicine; Joseph D. Buxbaum, PhD, Department of Psychiatry, Mount Sinai School of Medicine; and Jonathan L. Haines, PhD, Vanderbilt Center for Human Genetics Research, Vanderbilt University.

The researchers were able to identify small differences in the genetic sequences of the MTHFD1L gene in people with and without Alzheimer's disease. The team found that individuals with the variation may be nearly twice as likely to develop Alzheimer's disease as people without the variation. The researchers observed the gene variation throughout the human genomes of 2,269 people with late-onset Alzheimer's disease and 3,107 without the disease.

"Identifying this gene is important because the gene is known to be involved in influencing the body's levels of homocysteine, and high levels of homocysteine are a strong risk factor for late-onset Alzheimer disease," said Dr. Pericak-Vance. "In addition, variations of the MTHFD1L gene have been reported to possibly increase the risk of coronary artery disease. Since the function of blood vessels in the brain may affect Alzheimer's disease, this finding may help us understand how homocysteine levels and blood vessel function in the brain affect Alzheimer's disease."

"This finding gives us unique insight into possible interactions between genetic and environmental risk factors that contribute to AD," said Dr. Buxbaum. "We know of environmental and lifestyle factors that can impact homocysteine levels, and it will be important to understand whether variations of the MTHFD1L gene can modulate these effects."

"By applying the new tools of genomics we are now making rapid progress in finding out what genetic changes are involved in Alzheimer's disease. These findings will lead to a better understanding of what's happening in Alzheimer's disease, and how we can improve treatments," said Dr. Haines.

This work was supported by the National Institutes of Health National Institute on Aging (grants AG027944, AG20135, AG19757, AG010491, AG002219, and AG005138) and the National Institute of Neurological Disorders and Stroke (grants NS31153 and NS039764), the Alzheimer's Association, and the Louis D. Scientific Award of the Institut de France. Samples from the National Cell Repository for Alzheimer's Disease (NCRAD), which receives government support under a cooperative agreement grant (U24 AG21886) awarded by the National Institute on Aging (NIA), were used in this study.

About The Mount Sinai Medical Center

The Mount Sinai Medical Center encompasses both The Mount Sinai Hospital and Mount Sinai School of Medicine. Established in 1968, Mount Sinai School of Medicine is one of few medical schools embedded in a hospital in the United States. It has more than 3,400 faculty in 32 departments and 15 institutes, and ranks among the top 20 medical schools both in National Institute of Health funding and by U.S. News & World Report. The school received the 2009 Spencer Foreman Award for Outstanding Community Service from the Association of American Medical Colleges.

The Mount Sinai Hospital, founded in 1852, is a 1,171-bed tertiary- and quaternary-care teaching facility and one of the nation's oldest, largest and most-respected voluntary hospitals. In 2009, U.S. News & World Report ranked The Mount Sinai Hospital among the nation's top 20 hospitals based on reputation, patient safety, and other patient-care factors. Nearly 60,000 people were treated at Mount Sinai as inpatients last year, and approximately 530,000 outpatient visits took place.

For more information, visit www.mountsinai.org. Follow us on Twitter @mountsinainyc.

Mount Sinai Press Office | EurekAlert!
Further information:
http://www.mountsinai.org

More articles from Life Sciences:

nachricht Antimicrobial substances identified in Komodo dragon blood
23.02.2017 | American Chemical Society

nachricht New Mechanisms of Gene Inactivation may prevent Aging and Cancer
23.02.2017 | Leibniz-Institut für Alternsforschung - Fritz-Lipmann-Institut e.V. (FLI)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

From rocks in Colorado, evidence of a 'chaotic solar system'

23.02.2017 | Physics and Astronomy

'Quartz' crystals at the Earth's core power its magnetic field

23.02.2017 | Earth Sciences

Antimicrobial substances identified in Komodo dragon blood

23.02.2017 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>