Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Targeting the brain to treat obesity

24.07.2014

Focus therapies on areas of memory and learning, AU researchers say

Unlocking the secrets to better treating the pernicious disorders of obesity and dementia reside in the brain, according to a paper from American University's Center for Behavioral Neuroscience.

In the paper, researchers make the case for treating obesity with therapies aimed at areas of the brain responsible for memory and learning. Furthermore, treatments that focus on the hippocampus could play a role in reducing certain dementias.

"In the struggle to treat these diseases, therapies and preventive measures often fall short. This is a new way for providers who treat people with weight problems and for researchers who study dementias to think about obesity and cognitive decline," said Prof. Terry Davidson, center director and lead study author.

In the paper, published in the journal Physiology & Behavior, Davidson and colleague Ashley A. Martin review research findings linking obesity with cognitive decline, including the center's findings about the "vicious cycle" model, which explains how weight-challenged individuals who suffer from particular kinds of cognitive impairment are more susceptible to overeating.

Obesity, Memory Deficits and Lasting Effects

It is widely accepted that overconsumption of dietary fats, sugar and sweeteners can cause obesity. These types of dietary factors are also linked to cognitive dysfunction. Foods that are risk factors for cognitive impairment (i.e., foods high in saturated fats and simple carbohydrates that make up the modern Western diet) are so widespread and readily available in today's food environment, their consumption is all but encouraged, Davidson said.

Across age groups, evidence reveals links between excess food intake, body weight and cognitive dysfunction. Childhood obesity and consumption of the Western diet can have lasting effects, as seen through the normal aging process, cognitive deficits and brain pathologies. Several analyses of cases of mild cognitive impairment progressing to full-blown cases of Alzheimer's disease show that the first signs of brain disease can occur at least 50 years prior to the emergence of serious cognitive dysfunction. These signs originate in the hippocampus, the area of the brain where memory, learning, decision making, behavior control and other cognitive functions come into play.

Still, most research on the role of the brain in obesity focuses on areas thought to be involved with hunger motivation (e.g., hypothalamus), taste (e.g., brain stem), reinforcement (e.g., striatum) and reward (e.g., nucleus accumbens) or with hormonal or metabolic disorders. This research has not yet been successful in generating therapies that are effective in treating or preventing obesity, Davidson says.

Vicious Cycle

Experiments in rats by Davidson and colleagues show that overconsumption of the Western diet can damage or change the blood-brain barrier, the tight network of blood vessels protecting the brain and substrates for cognition. Certain kinds of dementias are known to arise from the breakdown in these brain substrates.

"Breakdown in the blood-brain barrier is more rationale for treating obesity as a learning and memory disorder," Davidson said. "Treating obesity successfully may also reduce the incidence of dementias, because the deterioration in the brain is often produced by the same diets that promote obesity."

The "vicious cycle" model AU researchers put forth says eating a Western diet high in saturated fats, sugar and simple carbohydrates produces pathologies in brain structures and circuits, ultimately changing brain pathways and disrupting cognitive abilities.

It works like this: People become less able to resist temptation when they encounter environmental cues (e.g., food itself or the sight of McDonald's Golden Arches) that remind them of the pleasures of consumption. They then eat more of the same type of foods that produce the pathological changes in the brain, leading to progressive deterioration in those areas and impairments in cognitive processes important for providing control over one's thoughts and behaviors. These cognitive impairments can weaken a person's ability to resist thinking about food, making them more easily distracted by food cues in the environment and more susceptible to overeating and weight gain.

"People have known at least since the time of Hippocrates that one key to a healthy life is to eat in moderation. Yet many of us are unable to follow that good advice," Davidson said. "Our work suggests that new therapeutic interventions that target brain regions involved with learning and memory may lead to success in controlling both the urge to eat, as well as the undesirable consequences produced by overeating."

###

American University is a leader in global education, enrolling a diverse student body from throughout the United States and nearly 140 countries. Located in Washington, D.C., the university provides opportunities for academic excellence, public service, and internships in the nation's capital and around the world. The Center for Behavioral Neuroscience creates a unique interdisciplinary research and training environment that promotes excellence in the study of brain function and its manifestation in behavior.

Rebecca Basu | Eurek Alert!
Further information:
http://www.american.edu

Further reports about: cognitive dementias disorders eat fats obesity overconsumption overeating weight

More articles from Life Sciences:

nachricht When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short
23.03.2017 | Institut für Pflanzenbiochemie

nachricht WPI team grows heart tissue on spinach leaves
23.03.2017 | Worcester Polytechnic Institute

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

Im Focus: Researchers Imitate Molecular Crowding in Cells

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to simulate these confined natural conditions in artificial vesicles for the first time. As reported in the academic journal Small, the results are offering better insight into the development of nanoreactors and artificial organelles.

Enzymes behave differently in a test tube compared with the molecular scrum of a living cell. Chemists from the University of Basel have now been able to...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

When Air is in Short Supply - Shedding light on plant stress reactions when oxygen runs short

23.03.2017 | Life Sciences

Researchers use light to remotely control curvature of plastics

23.03.2017 | Power and Electrical Engineering

Sea ice extent sinks to record lows at both poles

23.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>