Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Target 2 forms of iron to control cystic fibrosis lung infection

20.08.2013
The bacterium Pseudomonas aeruginosa needs iron to establish and maintain a biofilm in the lungs of cystic fibrosis patients, and therapies have been proposed to deprive the bacteria of this necessary element.

However, these techniques may not work, according to a new study published in mBio®, the online open-access journal of the American Society for Microbiology, because they only target one of the two types of iron that are available in the lung.

Current therapies focus on removing ferric iron [Fe(III)] but leave plenty of ferrous iron [Fe(II)] behind for the bacteria to use, according to the study. The concentration of Fe(II) present in the lungs of patients with cystic fibrosis correlates with disease severity, a sign that pathogens not only use ferrous iron - they thrive on it. These findings could have implications for treatment of P. aeruginosa in patients with cystic fibrosis.

"It is clear that the percentage of the total iron pool that is Fe(II) is substantial, particularly in severely ill patients," write the authors. Despite a wealth of data on the abundance of iron in the airways of patients with cystic fibrosis, this study is the first to make direct measurements of two different bioavailable forms of iron, Fe(III) and Fe(II).

An optimal concentration of bioavailable iron is needed to establish the formation of P. aeruginosa biofilms, thick accumulations of bacteria, polysaccharides, and cellular debris that can build up in the lungs of cystic fibrosis patients. It's also integral to stabilizing biofilms, so therapies have been proposed to perturb P. aeruginosa's uptake and acquisition of iron to fight biofilm development in the lung.

Because Fe(III) is commonly assumed to be the dominant physiologically-relevant form of iron, therapies focus on blocking Fe(III) acquisition. However, Fe(II) may also be present in the lung, reasoned the authors, a fact that could undermine iron-targeting therapies.

They tested sputum samples from a cross-section of 33 cystic fibrosis patients from the US and Belgium. Fe(II) was, indeed, abundant in the lungs of cystic fibrosis patients, and it comprised a considerable amount of the total iron in each sample, confirming the authors' suspicions. What's more, sicker patients had greater quantities of Fe(II), and while Fe(II) concentration was significantly correlated with disease the concentration of Fe(III) was not.

The authors also tested whether inhibiting the uptake of Fe(II) or Fe(III) - or both - would prevent biofilm formation. Using a high-throughput biofilm assay in the lab, they tested the ability of ferrozine, an Fe(II)-specific chelator, and conalbumin, a Fe(III)-specific chelator, to bind iron and prevent the buildup of a biofilm. They found that in a system where both Fe(II) and Fe(III) are present, as they are in the lungs of cystic fibrosis patients, it was most effective to apply both types of chelators: sequestering both forms of iron resulted in a 58% reduction in biofilm accumulation. This suggests that for treating patients, targeting both forms of iron might be more effective than targeting Fe(III) alone.

"Collectively, these studies underscore the importance of a dialectic between laboratory and environmental studies of pathogens such as P. aeruginosa," write the authors. Mechanistic studies of microorganisms in the laboratory can only go so far without real-world information about the chemical conditions under which they live in the human body. The integrated approach used in this study has provided a superior understanding of how iron availability might be manipulated to prevent biofilm formation and can inform the effective design and application of therapeutic strategies for treating P. aeruginosa biofilms.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Rainbow colors reveal cell history: Uncovering β-cell heterogeneity
22.09.2017 | DFG-Forschungszentrum für Regenerative Therapien TU Dresden

nachricht The pyrenoid is a carbon-fixing liquid droplet
22.09.2017 | Max-Planck-Institut für Biochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: The pyrenoid is a carbon-fixing liquid droplet

Plants and algae use the enzyme Rubisco to fix carbon dioxide, removing it from the atmosphere and converting it into biomass. Algae have figured out a way to increase the efficiency of carbon fixation. They gather most of their Rubisco into a ball-shaped microcompartment called the pyrenoid, which they flood with a high local concentration of carbon dioxide. A team of scientists at Princeton University, the Carnegie Institution for Science, Stanford University and the Max Plank Institute of Biochemistry have unravelled the mysteries of how the pyrenoid is assembled. These insights can help to engineer crops that remove more carbon dioxide from the atmosphere while producing more food.

A warming planet

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Rainbow colors reveal cell history: Uncovering β-cell heterogeneity

22.09.2017 | Life Sciences

Penn first in world to treat patient with new radiation technology

22.09.2017 | Medical Engineering

Calculating quietness

22.09.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>