Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Target 2 forms of iron to control cystic fibrosis lung infection

20.08.2013
The bacterium Pseudomonas aeruginosa needs iron to establish and maintain a biofilm in the lungs of cystic fibrosis patients, and therapies have been proposed to deprive the bacteria of this necessary element.

However, these techniques may not work, according to a new study published in mBio®, the online open-access journal of the American Society for Microbiology, because they only target one of the two types of iron that are available in the lung.

Current therapies focus on removing ferric iron [Fe(III)] but leave plenty of ferrous iron [Fe(II)] behind for the bacteria to use, according to the study. The concentration of Fe(II) present in the lungs of patients with cystic fibrosis correlates with disease severity, a sign that pathogens not only use ferrous iron - they thrive on it. These findings could have implications for treatment of P. aeruginosa in patients with cystic fibrosis.

"It is clear that the percentage of the total iron pool that is Fe(II) is substantial, particularly in severely ill patients," write the authors. Despite a wealth of data on the abundance of iron in the airways of patients with cystic fibrosis, this study is the first to make direct measurements of two different bioavailable forms of iron, Fe(III) and Fe(II).

An optimal concentration of bioavailable iron is needed to establish the formation of P. aeruginosa biofilms, thick accumulations of bacteria, polysaccharides, and cellular debris that can build up in the lungs of cystic fibrosis patients. It's also integral to stabilizing biofilms, so therapies have been proposed to perturb P. aeruginosa's uptake and acquisition of iron to fight biofilm development in the lung.

Because Fe(III) is commonly assumed to be the dominant physiologically-relevant form of iron, therapies focus on blocking Fe(III) acquisition. However, Fe(II) may also be present in the lung, reasoned the authors, a fact that could undermine iron-targeting therapies.

They tested sputum samples from a cross-section of 33 cystic fibrosis patients from the US and Belgium. Fe(II) was, indeed, abundant in the lungs of cystic fibrosis patients, and it comprised a considerable amount of the total iron in each sample, confirming the authors' suspicions. What's more, sicker patients had greater quantities of Fe(II), and while Fe(II) concentration was significantly correlated with disease the concentration of Fe(III) was not.

The authors also tested whether inhibiting the uptake of Fe(II) or Fe(III) - or both - would prevent biofilm formation. Using a high-throughput biofilm assay in the lab, they tested the ability of ferrozine, an Fe(II)-specific chelator, and conalbumin, a Fe(III)-specific chelator, to bind iron and prevent the buildup of a biofilm. They found that in a system where both Fe(II) and Fe(III) are present, as they are in the lungs of cystic fibrosis patients, it was most effective to apply both types of chelators: sequestering both forms of iron resulted in a 58% reduction in biofilm accumulation. This suggests that for treating patients, targeting both forms of iron might be more effective than targeting Fe(III) alone.

"Collectively, these studies underscore the importance of a dialectic between laboratory and environmental studies of pathogens such as P. aeruginosa," write the authors. Mechanistic studies of microorganisms in the laboratory can only go so far without real-world information about the chemical conditions under which they live in the human body. The integrated approach used in this study has provided a superior understanding of how iron availability might be manipulated to prevent biofilm formation and can inform the effective design and application of therapeutic strategies for treating P. aeruginosa biofilms.

mBio® is an open access online journal published by the American Society for Microbiology to make microbiology research broadly accessible. The focus of the journal is on rapid publication of cutting-edge research spanning the entire spectrum of microbiology and related fields. It can be found online at http://mbio.asm.org.

The American Society for Microbiology is the largest single life science society, composed of over 39,000 scientists and health professionals. ASM's mission is to advance the microbiological sciences as a vehicle for understanding life processes and to apply and communicate this knowledge for the improvement of health and environmental and economic well-being worldwide.

Jim Sliwa | EurekAlert!
Further information:
http://www.asmusa.org

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

Researchers from the University of Hamburg in Germany, in collaboration with colleagues from the University of Aarhus in Denmark, have synthesized a new superconducting material by growing a few layers of an antiferromagnetic transition-metal chalcogenide on a bismuth-based topological insulator, both being non-superconducting materials.

While superconductivity and magnetism are generally believed to be mutually exclusive, surprisingly, in this new material, superconducting correlations...

Im Focus: Studying fundamental particles in materials

Laser-driving of semimetals allows creating novel quasiparticle states within condensed matter systems and switching between different states on ultrafast time scales

Studying properties of fundamental particles in condensed matter systems is a promising approach to quantum field theory. Quasiparticles offer the opportunity...

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Water - as the underlying driver of the Earth’s carbon cycle

17.01.2017 | Earth Sciences

Interfacial Superconductivity: Magnetic and superconducting order revealed simultaneously

17.01.2017 | Materials Sciences

Smart homes will “LISTEN” to your voice

17.01.2017 | Architecture and Construction

VideoLinks
B2B-VideoLinks
More VideoLinks >>>