Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking the Pulse of Aging: Researchers Map the Pulse Pressure and Elasticity of Arteries in the Brain

19.08.2014

In an effort to identify how the elasticity of the arteries in the brain correlates with aging well, researchers at the Beckman Institute used optical methods developed in their lab to map out the pulse pressure of the entire brain’s cortex.

Researchers at the Beckman Institute at the University of Illinois at Urbana-Champaign have developed a new technique that can noninvasively image the pulse pressure and elasticity of the arteries of the brain, revealing correlations between arterial health and aging.

Brain artery support, which makes up the cerebrovascular system, is crucial for healthy brain aging and preventing diseases like Alzheimer’s and other forms of dementia.

The researchers, led by Monica Fabiani and Gabriele Gratton, psychology professors in the Cognitive Neuroscience Group, routinely record optical imaging data by shining near-infrared light into the brain to measure neural activity.

Their idea to measure pulse pressure through optical imaging came from observing in previous studies that the arterial pulse produced strong signals in the optical data, which they normally do not use to study brain function. Realizing the value in this overlooked data, they launched a new study that focused on data from 53 participants aged 55-87 years. 

“When we image the brain using our optical methods, we usually remove the pulse as an artifact—we take it out in order to get to other signals from the brain,” said Fabiani. “But we are interested in aging and how the brain changes with other bodily systems, like the cardiovascular system. When thinking about this, we realized it would be useful to measure the cerebrovascular system as we worry about cognition and brain physiology.”

The initial results using this new technique find that arterial stiffness is directly correlated with cardiorespiratory fitness: the more fit people are, the more elastic their arteries. Because arterial stiffening is a cause of reduced brain blood flow, stiff arteries can lead to a faster rate of cognitive decline and an increased chance of stroke, especially in older adults.

Using this method, the researchers were able to collect additional, region-specific data.

“In particular, noninvasive optical methods can provide estimates of arterial elasticity and brain pulse pressure in different regions of the brain, which can give us clues about the how different regions of the brain contribute to our overall health,” said Gratton. “For example, if we found that a particular artery was stiff and causing decreased blood flow to and loss of brain cells in a specific area, we might find that the damage to this area is also associated with an increased likelihood of certain psychological and cognitive issues.”

The researchers are investigating ways to use this technique to measure arterial stiffness across different age groups and specific cardiovascular or stress levels. High levels of stress, especially over a long amount of time, may affect arterial health, according to the researchers. 

“This is just the beginning of what we’re able to explore with this technique. We’re looking at other age groups, and in the future we intend to study people with varying levels of long-term stress,” said Fabiani. “When people are stressed for long periods of time, like if they’re caring for a sick parent, stress might generate vasoconstriction and higher blood pressure, with significant consequences for arterial function in the brain. We are interested in knowing whether this may be an important factor leading to arterial stiffness.” 

The researchers are also able to gather information about pulse transit time, or how long it takes the blood to flow through the brain’s arteries, and visualize large arteries running along the brain surface.

“Our goal is to find more information about what causes arterial stiffness, and how regional arterial stiffness can lead to specific health problems. Our findings continue to bolster the idea that an important key to aging well is having good cerebrovascular health,” said Fabiani.

The technique and findings are detailed in an article published in the journal Psychophysiology. Additional support was provided by Beckman researchers Kathy Low, Chin-Hong Tan, Benjamin Zimmerman, Mark Fletcher, Nils Schneider-Garces, Edward Maclin, Antonio Chiarelli, and Brad Sutton. It was supported by the National Institute on Aging and the National Science Foundation.

August Cassens | Eurek Alert!
Further information:
http://beckman.illinois.edu/news/2014/08/taking-the-pulse-of-aging

Further reports about: Aging Brain Technology arteries blood cognitive levels pressure stiff stiffness

More articles from Life Sciences:

nachricht Nanoparticle Exposure Can Awaken Dormant Viruses in the Lungs
16.01.2017 | Helmholtz Zentrum München - Deutsches Forschungszentrum für Gesundheit und Umwelt

nachricht Cholera bacteria infect more effectively with a simple twist of shape
13.01.2017 | Princeton University

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Designing Architecture with Solar Building Envelopes

Among the general public, solar thermal energy is currently associated with dark blue, rectangular collectors on building roofs. Technologies are needed for aesthetically high quality architecture which offer the architect more room for manoeuvre when it comes to low- and plus-energy buildings. With the “ArKol” project, researchers at Fraunhofer ISE together with partners are currently developing two façade collectors for solar thermal energy generation, which permit a high degree of design flexibility: a strip collector for opaque façade sections and a solar thermal blind for transparent sections. The current state of the two developments will be presented at the BAU 2017 trade fair.

As part of the “ArKol – development of architecturally highly integrated façade collectors with heat pipes” project, Fraunhofer ISE together with its partners...

Im Focus: How to inflate a hardened concrete shell with a weight of 80 t

At TU Wien, an alternative for resource intensive formwork for the construction of concrete domes was developed. It is now used in a test dome for the Austrian Federal Railways Infrastructure (ÖBB Infrastruktur).

Concrete shells are efficient structures, but not very resource efficient. The formwork for the construction of concrete domes alone requires a high amount of...

Im Focus: Bacterial Pac Man molecule snaps at sugar

Many pathogens use certain sugar compounds from their host to help conceal themselves against the immune system. Scientists at the University of Bonn have now, in cooperation with researchers at the University of York in the United Kingdom, analyzed the dynamics of a bacterial molecule that is involved in this process. They demonstrate that the protein grabs onto the sugar molecule with a Pac Man-like chewing motion and holds it until it can be used. Their results could help design therapeutics that could make the protein poorer at grabbing and holding and hence compromise the pathogen in the host. The study has now been published in “Biophysical Journal”.

The cells of the mouth, nose and intestinal mucosa produce large quantities of a chemical called sialic acid. Many bacteria possess a special transport system...

Im Focus: Newly proposed reference datasets improve weather satellite data quality

UMD, NOAA collaboration demonstrates suitability of in-orbit datasets for weather satellite calibration

"Traffic and weather, together on the hour!" blasts your local radio station, while your smartphone knows the weather halfway across the world. A network of...

Im Focus: Repairing defects in fiber-reinforced plastics more efficiently

Fiber-reinforced plastics (FRP) are frequently used in the aeronautic and automobile industry. However, the repair of workpieces made of these composite materials is often less profitable than exchanging the part. In order to increase the lifetime of FRP parts and to make them more eco-efficient, the Laser Zentrum Hannover e.V. (LZH) and the Apodius GmbH want to combine a new measuring device for fiber layer orientation with an innovative laser-based repair process.

Defects in FRP pieces may be production or operation-related. Whether or not repair is cost-effective depends on the geometry of the defective area, the tools...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

12V, 48V, high-voltage – trends in E/E automotive architecture

10.01.2017 | Event News

2nd Conference on Non-Textual Information on 10 and 11 May 2017 in Hannover

09.01.2017 | Event News

Nothing will happen without batteries making it happen!

05.01.2017 | Event News

 
Latest News

Multiregional brain on a chip

16.01.2017 | Power and Electrical Engineering

New technology enables 5-D imaging in live animals, humans

16.01.2017 | Information Technology

Researchers develop environmentally friendly soy air filter

16.01.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>