Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking the Pulse of Aging: Researchers Map the Pulse Pressure and Elasticity of Arteries in the Brain

19.08.2014

In an effort to identify how the elasticity of the arteries in the brain correlates with aging well, researchers at the Beckman Institute used optical methods developed in their lab to map out the pulse pressure of the entire brain’s cortex.

Researchers at the Beckman Institute at the University of Illinois at Urbana-Champaign have developed a new technique that can noninvasively image the pulse pressure and elasticity of the arteries of the brain, revealing correlations between arterial health and aging.

Brain artery support, which makes up the cerebrovascular system, is crucial for healthy brain aging and preventing diseases like Alzheimer’s and other forms of dementia.

The researchers, led by Monica Fabiani and Gabriele Gratton, psychology professors in the Cognitive Neuroscience Group, routinely record optical imaging data by shining near-infrared light into the brain to measure neural activity.

Their idea to measure pulse pressure through optical imaging came from observing in previous studies that the arterial pulse produced strong signals in the optical data, which they normally do not use to study brain function. Realizing the value in this overlooked data, they launched a new study that focused on data from 53 participants aged 55-87 years. 

“When we image the brain using our optical methods, we usually remove the pulse as an artifact—we take it out in order to get to other signals from the brain,” said Fabiani. “But we are interested in aging and how the brain changes with other bodily systems, like the cardiovascular system. When thinking about this, we realized it would be useful to measure the cerebrovascular system as we worry about cognition and brain physiology.”

The initial results using this new technique find that arterial stiffness is directly correlated with cardiorespiratory fitness: the more fit people are, the more elastic their arteries. Because arterial stiffening is a cause of reduced brain blood flow, stiff arteries can lead to a faster rate of cognitive decline and an increased chance of stroke, especially in older adults.

Using this method, the researchers were able to collect additional, region-specific data.

“In particular, noninvasive optical methods can provide estimates of arterial elasticity and brain pulse pressure in different regions of the brain, which can give us clues about the how different regions of the brain contribute to our overall health,” said Gratton. “For example, if we found that a particular artery was stiff and causing decreased blood flow to and loss of brain cells in a specific area, we might find that the damage to this area is also associated with an increased likelihood of certain psychological and cognitive issues.”

The researchers are investigating ways to use this technique to measure arterial stiffness across different age groups and specific cardiovascular or stress levels. High levels of stress, especially over a long amount of time, may affect arterial health, according to the researchers. 

“This is just the beginning of what we’re able to explore with this technique. We’re looking at other age groups, and in the future we intend to study people with varying levels of long-term stress,” said Fabiani. “When people are stressed for long periods of time, like if they’re caring for a sick parent, stress might generate vasoconstriction and higher blood pressure, with significant consequences for arterial function in the brain. We are interested in knowing whether this may be an important factor leading to arterial stiffness.” 

The researchers are also able to gather information about pulse transit time, or how long it takes the blood to flow through the brain’s arteries, and visualize large arteries running along the brain surface.

“Our goal is to find more information about what causes arterial stiffness, and how regional arterial stiffness can lead to specific health problems. Our findings continue to bolster the idea that an important key to aging well is having good cerebrovascular health,” said Fabiani.

The technique and findings are detailed in an article published in the journal Psychophysiology. Additional support was provided by Beckman researchers Kathy Low, Chin-Hong Tan, Benjamin Zimmerman, Mark Fletcher, Nils Schneider-Garces, Edward Maclin, Antonio Chiarelli, and Brad Sutton. It was supported by the National Institute on Aging and the National Science Foundation.

August Cassens | Eurek Alert!
Further information:
http://beckman.illinois.edu/news/2014/08/taking-the-pulse-of-aging

Further reports about: Aging Brain Technology arteries blood cognitive levels pressure stiff stiffness

More articles from Life Sciences:

nachricht Nerve cells with a sense of rhythm
25.08.2016 | Deutsches Primatenzentrum GmbH - Leibniz-Institut für Primatenforschung

nachricht Genetic Regulation of the Thymus Function Identified
23.08.2016 | Universität Basel

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Streamlining accelerated computing for industry

PyFR code combines high accuracy with flexibility to resolve unsteady turbulence problems

Scientists and engineers striving to create the next machine-age marvel--whether it be a more aerodynamic rocket, a faster race car, or a higher-efficiency jet...

Im Focus: X-ray optics on a chip

Waveguides are widely used for filtering, confining, guiding, coupling or splitting beams of visible light. However, creating waveguides that could do the same for X-rays has posed tremendous challenges in fabrication, so they are still only in an early stage of development.

In the latest issue of Acta Crystallographica Section A: Foundations and Advances , Sarah Hoffmann-Urlaub and Tim Salditt report the fabrication and testing of...

Im Focus: Piggyback battery for microchips: TU Graz researchers develop new battery concept

Electrochemists at TU Graz have managed to use monocrystalline semiconductor silicon as an active storage electrode in lithium batteries. This enables an integrated power supply to be made for microchips with a rechargeable battery.

Small electrical gadgets, such as mobile phones, tablets or notebooks, are indispensable accompaniments of everyday life. Integrated circuits in the interiors...

Im Focus: UCI physicists confirm possible discovery of fifth force of nature

Light particle could be key to understanding dark matter in universe

Recent findings indicating the possible discovery of a previously unknown subatomic particle may be evidence of a fifth fundamental force of nature, according...

Im Focus: Wi-fi from lasers

White light from lasers demonstrates data speeds of up to 2 GB/s

A nanocrystalline material that rapidly makes white light out of blue light has been developed by KAUST researchers.

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

The energy transition is not possible without Geotechnics

25.08.2016 | Event News

New Ideas for the Shipping Industry

24.08.2016 | Event News

A week of excellence: 22 of the world’s best computer scientists and mathematicians in Heidelberg

12.08.2016 | Event News

 
Latest News

Spherical tokamak as model for next steps in fusion energy

25.08.2016 | Power and Electrical Engineering

Scientists identify spark plug that ignites nerve cell demise in ALS

25.08.2016 | Health and Medicine

Secure networks for the Internet of the future

25.08.2016 | Information Technology

VideoLinks
B2B-VideoLinks
More VideoLinks >>>