Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking the Pulse of Aging: Researchers Map the Pulse Pressure and Elasticity of Arteries in the Brain

19.08.2014

In an effort to identify how the elasticity of the arteries in the brain correlates with aging well, researchers at the Beckman Institute used optical methods developed in their lab to map out the pulse pressure of the entire brain’s cortex.

Researchers at the Beckman Institute at the University of Illinois at Urbana-Champaign have developed a new technique that can noninvasively image the pulse pressure and elasticity of the arteries of the brain, revealing correlations between arterial health and aging.

Brain artery support, which makes up the cerebrovascular system, is crucial for healthy brain aging and preventing diseases like Alzheimer’s and other forms of dementia.

The researchers, led by Monica Fabiani and Gabriele Gratton, psychology professors in the Cognitive Neuroscience Group, routinely record optical imaging data by shining near-infrared light into the brain to measure neural activity.

Their idea to measure pulse pressure through optical imaging came from observing in previous studies that the arterial pulse produced strong signals in the optical data, which they normally do not use to study brain function. Realizing the value in this overlooked data, they launched a new study that focused on data from 53 participants aged 55-87 years. 

“When we image the brain using our optical methods, we usually remove the pulse as an artifact—we take it out in order to get to other signals from the brain,” said Fabiani. “But we are interested in aging and how the brain changes with other bodily systems, like the cardiovascular system. When thinking about this, we realized it would be useful to measure the cerebrovascular system as we worry about cognition and brain physiology.”

The initial results using this new technique find that arterial stiffness is directly correlated with cardiorespiratory fitness: the more fit people are, the more elastic their arteries. Because arterial stiffening is a cause of reduced brain blood flow, stiff arteries can lead to a faster rate of cognitive decline and an increased chance of stroke, especially in older adults.

Using this method, the researchers were able to collect additional, region-specific data.

“In particular, noninvasive optical methods can provide estimates of arterial elasticity and brain pulse pressure in different regions of the brain, which can give us clues about the how different regions of the brain contribute to our overall health,” said Gratton. “For example, if we found that a particular artery was stiff and causing decreased blood flow to and loss of brain cells in a specific area, we might find that the damage to this area is also associated with an increased likelihood of certain psychological and cognitive issues.”

The researchers are investigating ways to use this technique to measure arterial stiffness across different age groups and specific cardiovascular or stress levels. High levels of stress, especially over a long amount of time, may affect arterial health, according to the researchers. 

“This is just the beginning of what we’re able to explore with this technique. We’re looking at other age groups, and in the future we intend to study people with varying levels of long-term stress,” said Fabiani. “When people are stressed for long periods of time, like if they’re caring for a sick parent, stress might generate vasoconstriction and higher blood pressure, with significant consequences for arterial function in the brain. We are interested in knowing whether this may be an important factor leading to arterial stiffness.” 

The researchers are also able to gather information about pulse transit time, or how long it takes the blood to flow through the brain’s arteries, and visualize large arteries running along the brain surface.

“Our goal is to find more information about what causes arterial stiffness, and how regional arterial stiffness can lead to specific health problems. Our findings continue to bolster the idea that an important key to aging well is having good cerebrovascular health,” said Fabiani.

The technique and findings are detailed in an article published in the journal Psychophysiology. Additional support was provided by Beckman researchers Kathy Low, Chin-Hong Tan, Benjamin Zimmerman, Mark Fletcher, Nils Schneider-Garces, Edward Maclin, Antonio Chiarelli, and Brad Sutton. It was supported by the National Institute on Aging and the National Science Foundation.

August Cassens | Eurek Alert!
Further information:
http://beckman.illinois.edu/news/2014/08/taking-the-pulse-of-aging

Further reports about: Aging Brain Technology arteries blood cognitive levels pressure stiff stiffness

More articles from Life Sciences:

nachricht Cells migrate collectively by intermittent bursts of activity
30.09.2016 | Aalto University

nachricht The structure of the BinAB toxin revealed: one small step for Man, a major problem for mosquitoes!
30.09.2016 | CNRS (Délégation Paris Michel-Ange)

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

Heavy construction machinery is the focus of Oak Ridge National Laboratory’s latest advance in additive manufacturing research. With industry partners and university students, ORNL researchers are designing and producing the world’s first 3D printed excavator, a prototype that will leverage large-scale AM technologies and explore the feasibility of printing with metal alloys.

Increasing the size and speed of metal-based 3D printing techniques, using low-cost alloys like steel and aluminum, could create new industrial applications...

Im Focus: New welding process joins dissimilar sheets better

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of light metals.
Scientists at the University of Stuttgart have now developed two new process variants that will considerably expand the areas of application for friction stir welding.
Technologie-Lizenz-Büro (TLB) GmbH supports the University of Stuttgart in patenting and marketing its innovations.

Friction stir welding is a still-young and thus often unfamiliar pressure welding process for joining flat components and semi-finished components made of...

Im Focus: First quantum photonic circuit with electrically driven light source

Optical quantum computers can revolutionize computer technology. A team of researchers led by scientists from Münster University and KIT now succeeded in putting a quantum optical experimental set-up onto a chip. In doing so, they have met one of the requirements for making it possible to use photonic circuits for optical quantum computers.

Optical quantum computers are what people are pinning their hopes on for tomorrow’s computer technology – whether for tap-proof data encryption, ultrafast...

Im Focus: OLED microdisplays in data glasses for improved human-machine interaction

The Fraunhofer Institute for Organic Electronics, Electron Beam and Plasma Technology FEP has been developing various applications for OLED microdisplays based on organic semiconductors. By integrating the capabilities of an image sensor directly into the microdisplay, eye movements can be recorded by the smart glasses and utilized for guidance and control functions, as one example. The new design will be debuted at Augmented World Expo Europe (AWE) in Berlin at Booth B25, October 18th – 19th.

“Augmented-reality” and “wearables” have become terms we encounter almost daily. Both can make daily life a little simpler and provide valuable assistance for...

Im Focus: Artificial Intelligence Helps in the Discovery of New Materials

With the help of artificial intelligence, chemists from the University of Basel in Switzerland have computed the characteristics of about two million crystals made up of four chemical elements. The researchers were able to identify 90 previously unknown thermodynamically stable crystals that can be regarded as new materials. They report on their findings in the scientific journal Physical Review Letters.

Elpasolite is a glassy, transparent, shiny and soft mineral with a cubic crystal structure. First discovered in El Paso County (Colorado, USA), it can also be...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Call for Paper – Panacea Green Infrastructure?

30.09.2016 | Event News

HLF: From an experiment to an establishment

29.09.2016 | Event News

European Health Forum Gastein 2016 kicks off today

28.09.2016 | Event News

 
Latest News

First-Ever 3D Printed Excavator Project Advances Large-Scale Additive Manufacturing R&D

30.09.2016 | Materials Sciences

New Technique for Finding Weakness in Earth’s Crust

30.09.2016 | Earth Sciences

Cells migrate collectively by intermittent bursts of activity

30.09.2016 | Life Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>