Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking proteins for a ride

29.06.2009
A recently discovered structure in plant cells functions to transport proteins and glycans around the cell

Cells produce thousands of proteins that are essential for life, but the proteins are of no use unless they can be delivered to the right places. Now, Ken Matsuoka and co-workers at the RIKEN Plant Science Center in Yokohama, Kyushu University in Fukuoka and Niigata University have discovered a subcellular structure in plants that carries proteins and glycans to the correct locations, especially outside of the cell1.

The newly identified delivery structure arises from another substructure in the cell called the Golgi apparatus. If one imagines a cell as a factory producing proteins, the Golgi apparatus can be thought of as the sorting office, where proteins are organized and packaged into bundles ready for their journey around the body.

The protein bundles, packed together with lipids, are called transport vesicles. One of their functions is to travel to the cell membrane and secrete proteins from the cell—a process called exocytosis.

Plants, in particular, have complicated ‘post-Golgi’ compartments that influence vesicles during the last stages of exocytosis. “It is not yet clear whether these compartments are the sole elements in the late secretory pathway of plants, how they interact, or how they are involved in exocytosis,” says Matsuoka.

Matsuoka and co-workers monitored the movement of vesicles in tobacco plant cells, by fluorescent tagging of a known vesicle protein called secretory carrier membrane protein 2 (SCAMP2). They found that SCAMP2 accumulates in the Golgi network, but not in known post-Golgi compartments. Instead, it appears in clusters of between 5 and 12 vesicles, each around 50 to 100 nanometers in diameter.

The researchers named these new structures ‘secretory vesicle clusters’, or SVCs. The SVCs can move separately from the Golgi network, and are often seen tethered to cell walls, where they are probably involved in secreting proteins and glycans from the cell.

Furthermore, the SVCs appear to play an important role in cell division. SVCs in dividing cells were targeted towards the cell plate—a thick wall of glycans and proteins that forms down the centre of a cell before the cell splits in two.

The researchers found SVCs in Arabidopsis and rice plants as well as tobacco. Therefore the SVCs represent a standard delivery mechanism supplying cells with the necessary ingredients for maintaining life.

“We are now isolating the SVCs to analyze their constituents,” says Matsuoka. “[Then] we will be able to analyze the molecular mechanisms of SVC transport and for tethering vesicles together in SVCs.”

Reference

1. Toyooka, K., Goto, Y., Asatsuma, S., Koizumi, M., Mitsui, T. & Matsuoka, K. A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. The Plant Cell 21, 1212–1229 (2009).

The corresponding author for this highlight is based at the RIKEN Gene Discovery Research Group

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/730/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Nesting aids make agricultural fields attractive for bees
20.07.2017 | Julius-Maximilians-Universität Würzburg

nachricht The Kitchen Sponge – Breeding Ground for Germs
20.07.2017 | Hochschule Furtwangen

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Manipulating Electron Spins Without Loss of Information

Physicists have developed a new technique that uses electrical voltages to control the electron spin on a chip. The newly-developed method provides protection from spin decay, meaning that the contained information can be maintained and transmitted over comparatively large distances, as has been demonstrated by a team from the University of Basel’s Department of Physics and the Swiss Nanoscience Institute. The results have been published in Physical Review X.

For several years, researchers have been trying to use the spin of an electron to store and transmit information. The spin of each electron is always coupled...

Im Focus: The proton precisely weighted

What is the mass of a proton? Scientists from Germany and Japan successfully did an important step towards the most exact knowledge of this fundamental constant. By means of precision measurements on a single proton, they could improve the precision by a factor of three and also correct the existing value.

To determine the mass of a single proton still more accurate – a group of physicists led by Klaus Blaum and Sven Sturm of the Max Planck Institute for Nuclear...

Im Focus: On the way to a biological alternative

A bacterial enzyme enables reactions that open up alternatives to key industrial chemical processes

The research team of Prof. Dr. Oliver Einsle at the University of Freiburg's Institute of Biochemistry has long been exploring the functioning of nitrogenase....

Im Focus: The 1 trillion tonne iceberg

Larsen C Ice Shelf rift finally breaks through

A one trillion tonne iceberg - one of the biggest ever recorded -- has calved away from the Larsen C Ice Shelf in Antarctica, after a rift in the ice,...

Im Focus: Laser-cooled ions contribute to better understanding of friction

Physics supports biology: Researchers from PTB have developed a model system to investigate friction phenomena with atomic precision

Friction: what you want from car brakes, otherwise rather a nuisance. In any case, it is useful to know as precisely as possible how friction phenomena arise –...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

»We are bringing Additive Manufacturing to SMEs«

19.07.2017 | Event News

The technology with a feel for feelings

12.07.2017 | Event News

Leipzig HTP-Forum discusses "hydrothermal processes" as a key technology for a biobased economy

12.07.2017 | Event News

 
Latest News

Researchers create new technique for manipulating polarization of terahertz radiation

20.07.2017 | Information Technology

High-tech sensing illuminates concrete stress testing

20.07.2017 | Materials Sciences

First direct observation and measurement of ultra-fast moving vortices in superconductors

20.07.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>