Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking proteins for a ride

29.06.2009
A recently discovered structure in plant cells functions to transport proteins and glycans around the cell

Cells produce thousands of proteins that are essential for life, but the proteins are of no use unless they can be delivered to the right places. Now, Ken Matsuoka and co-workers at the RIKEN Plant Science Center in Yokohama, Kyushu University in Fukuoka and Niigata University have discovered a subcellular structure in plants that carries proteins and glycans to the correct locations, especially outside of the cell1.

The newly identified delivery structure arises from another substructure in the cell called the Golgi apparatus. If one imagines a cell as a factory producing proteins, the Golgi apparatus can be thought of as the sorting office, where proteins are organized and packaged into bundles ready for their journey around the body.

The protein bundles, packed together with lipids, are called transport vesicles. One of their functions is to travel to the cell membrane and secrete proteins from the cell—a process called exocytosis.

Plants, in particular, have complicated ‘post-Golgi’ compartments that influence vesicles during the last stages of exocytosis. “It is not yet clear whether these compartments are the sole elements in the late secretory pathway of plants, how they interact, or how they are involved in exocytosis,” says Matsuoka.

Matsuoka and co-workers monitored the movement of vesicles in tobacco plant cells, by fluorescent tagging of a known vesicle protein called secretory carrier membrane protein 2 (SCAMP2). They found that SCAMP2 accumulates in the Golgi network, but not in known post-Golgi compartments. Instead, it appears in clusters of between 5 and 12 vesicles, each around 50 to 100 nanometers in diameter.

The researchers named these new structures ‘secretory vesicle clusters’, or SVCs. The SVCs can move separately from the Golgi network, and are often seen tethered to cell walls, where they are probably involved in secreting proteins and glycans from the cell.

Furthermore, the SVCs appear to play an important role in cell division. SVCs in dividing cells were targeted towards the cell plate—a thick wall of glycans and proteins that forms down the centre of a cell before the cell splits in two.

The researchers found SVCs in Arabidopsis and rice plants as well as tobacco. Therefore the SVCs represent a standard delivery mechanism supplying cells with the necessary ingredients for maintaining life.

“We are now isolating the SVCs to analyze their constituents,” says Matsuoka. “[Then] we will be able to analyze the molecular mechanisms of SVC transport and for tethering vesicles together in SVCs.”

Reference

1. Toyooka, K., Goto, Y., Asatsuma, S., Koizumi, M., Mitsui, T. & Matsuoka, K. A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. The Plant Cell 21, 1212–1229 (2009).

The corresponding author for this highlight is based at the RIKEN Gene Discovery Research Group

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/730/
http://www.researchsea.com

More articles from Life Sciences:

nachricht MicroRNA helps cancer evade immune system
19.09.2017 | Salk Institute

nachricht Ruby: Jacobs University scientists are collaborating in the development of a new type of chocolate
18.09.2017 | Jacobs University Bremen gGmbH

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

Im Focus: Silencing bacteria

HZI researchers pave the way for new agents that render hospital pathogens mute

Pathogenic bacteria are becoming resistant to common antibiotics to an ever increasing degree. One of the most difficult germs is Pseudomonas aeruginosa, a...

Im Focus: Artificial Enzymes for Hydrogen Conversion

Scientists from the MPI for Chemical Energy Conversion report in the first issue of the new journal JOULE.

Cell Press has just released the first issue of Joule, a new journal dedicated to sustainable energy research. In this issue James Birrell, Olaf Rüdiger,...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

New quantum phenomena in graphene superlattices

19.09.2017 | Physics and Astronomy

A simple additive to improve film quality

19.09.2017 | Power and Electrical Engineering

VideoLinks
B2B-VideoLinks
More VideoLinks >>>