Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking proteins for a ride

29.06.2009
A recently discovered structure in plant cells functions to transport proteins and glycans around the cell

Cells produce thousands of proteins that are essential for life, but the proteins are of no use unless they can be delivered to the right places. Now, Ken Matsuoka and co-workers at the RIKEN Plant Science Center in Yokohama, Kyushu University in Fukuoka and Niigata University have discovered a subcellular structure in plants that carries proteins and glycans to the correct locations, especially outside of the cell1.

The newly identified delivery structure arises from another substructure in the cell called the Golgi apparatus. If one imagines a cell as a factory producing proteins, the Golgi apparatus can be thought of as the sorting office, where proteins are organized and packaged into bundles ready for their journey around the body.

The protein bundles, packed together with lipids, are called transport vesicles. One of their functions is to travel to the cell membrane and secrete proteins from the cell—a process called exocytosis.

Plants, in particular, have complicated ‘post-Golgi’ compartments that influence vesicles during the last stages of exocytosis. “It is not yet clear whether these compartments are the sole elements in the late secretory pathway of plants, how they interact, or how they are involved in exocytosis,” says Matsuoka.

Matsuoka and co-workers monitored the movement of vesicles in tobacco plant cells, by fluorescent tagging of a known vesicle protein called secretory carrier membrane protein 2 (SCAMP2). They found that SCAMP2 accumulates in the Golgi network, but not in known post-Golgi compartments. Instead, it appears in clusters of between 5 and 12 vesicles, each around 50 to 100 nanometers in diameter.

The researchers named these new structures ‘secretory vesicle clusters’, or SVCs. The SVCs can move separately from the Golgi network, and are often seen tethered to cell walls, where they are probably involved in secreting proteins and glycans from the cell.

Furthermore, the SVCs appear to play an important role in cell division. SVCs in dividing cells were targeted towards the cell plate—a thick wall of glycans and proteins that forms down the centre of a cell before the cell splits in two.

The researchers found SVCs in Arabidopsis and rice plants as well as tobacco. Therefore the SVCs represent a standard delivery mechanism supplying cells with the necessary ingredients for maintaining life.

“We are now isolating the SVCs to analyze their constituents,” says Matsuoka. “[Then] we will be able to analyze the molecular mechanisms of SVC transport and for tethering vesicles together in SVCs.”

Reference

1. Toyooka, K., Goto, Y., Asatsuma, S., Koizumi, M., Mitsui, T. & Matsuoka, K. A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. The Plant Cell 21, 1212–1229 (2009).

The corresponding author for this highlight is based at the RIKEN Gene Discovery Research Group

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/730/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Cells communicate in a dynamic code
19.02.2018 | California Institute of Technology

nachricht Studying mitosis' structure to understand the inside of cancer cells
19.02.2018 | Biophysical Society

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: In best circles: First integrated circuit from self-assembled polymer

For the first time, a team of researchers at the Max-Planck Institute (MPI) for Polymer Research in Mainz, Germany, has succeeded in making an integrated circuit (IC) from just a monolayer of a semiconducting polymer via a bottom-up, self-assembly approach.

In the self-assembly process, the semiconducting polymer arranges itself into an ordered monolayer in a transistor. The transistors are binary switches used...

Im Focus: Demonstration of a single molecule piezoelectric effect

Breakthrough provides a new concept of the design of molecular motors, sensors and electricity generators at nanoscale

Researchers from the Institute of Organic Chemistry and Biochemistry of the CAS (IOCB Prague), Institute of Physics of the CAS (IP CAS) and Palacký University...

Im Focus: Hybrid optics bring color imaging using ultrathin metalenses into focus

For photographers and scientists, lenses are lifesavers. They reflect and refract light, making possible the imaging systems that drive discovery through the microscope and preserve history through cameras.

But today's glass-based lenses are bulky and resist miniaturization. Next-generation technologies, such as ultrathin cameras or tiny microscopes, require...

Im Focus: Stem cell divisions in the adult brain seen for the first time

Scientists from the University of Zurich have succeeded for the first time in tracking individual stem cells and their neuronal progeny over months within the intact adult brain. This study sheds light on how new neurons are produced throughout life.

The generation of new nerve cells was once thought to taper off at the end of embryonic development. However, recent research has shown that the adult brain...

Im Focus: Interference as a new method for cooling quantum devices

Theoretical physicists propose to use negative interference to control heat flow in quantum devices. Study published in Physical Review Letters

Quantum computer parts are sensitive and need to be cooled to very low temperatures. Their tiny size makes them particularly susceptible to a temperature...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

2nd International Conference on High Temperature Shape Memory Alloys (HTSMAs)

15.02.2018 | Event News

Aachen DC Grid Summit 2018

13.02.2018 | Event News

How Global Climate Policy Can Learn from the Energy Transition

12.02.2018 | Event News

 
Latest News

Japanese researchers develop ultrathin, highly elastic skin display

19.02.2018 | Information Technology

Dispersal of Fish Eggs by Water Birds – Just a Myth?

19.02.2018 | Ecology, The Environment and Conservation

Studying mitosis' structure to understand the inside of cancer cells

19.02.2018 | Life Sciences

VideoLinks
Science & Research
Overview of more VideoLinks >>>