Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Taking proteins for a ride

29.06.2009
A recently discovered structure in plant cells functions to transport proteins and glycans around the cell

Cells produce thousands of proteins that are essential for life, but the proteins are of no use unless they can be delivered to the right places. Now, Ken Matsuoka and co-workers at the RIKEN Plant Science Center in Yokohama, Kyushu University in Fukuoka and Niigata University have discovered a subcellular structure in plants that carries proteins and glycans to the correct locations, especially outside of the cell1.

The newly identified delivery structure arises from another substructure in the cell called the Golgi apparatus. If one imagines a cell as a factory producing proteins, the Golgi apparatus can be thought of as the sorting office, where proteins are organized and packaged into bundles ready for their journey around the body.

The protein bundles, packed together with lipids, are called transport vesicles. One of their functions is to travel to the cell membrane and secrete proteins from the cell—a process called exocytosis.

Plants, in particular, have complicated ‘post-Golgi’ compartments that influence vesicles during the last stages of exocytosis. “It is not yet clear whether these compartments are the sole elements in the late secretory pathway of plants, how they interact, or how they are involved in exocytosis,” says Matsuoka.

Matsuoka and co-workers monitored the movement of vesicles in tobacco plant cells, by fluorescent tagging of a known vesicle protein called secretory carrier membrane protein 2 (SCAMP2). They found that SCAMP2 accumulates in the Golgi network, but not in known post-Golgi compartments. Instead, it appears in clusters of between 5 and 12 vesicles, each around 50 to 100 nanometers in diameter.

The researchers named these new structures ‘secretory vesicle clusters’, or SVCs. The SVCs can move separately from the Golgi network, and are often seen tethered to cell walls, where they are probably involved in secreting proteins and glycans from the cell.

Furthermore, the SVCs appear to play an important role in cell division. SVCs in dividing cells were targeted towards the cell plate—a thick wall of glycans and proteins that forms down the centre of a cell before the cell splits in two.

The researchers found SVCs in Arabidopsis and rice plants as well as tobacco. Therefore the SVCs represent a standard delivery mechanism supplying cells with the necessary ingredients for maintaining life.

“We are now isolating the SVCs to analyze their constituents,” says Matsuoka. “[Then] we will be able to analyze the molecular mechanisms of SVC transport and for tethering vesicles together in SVCs.”

Reference

1. Toyooka, K., Goto, Y., Asatsuma, S., Koizumi, M., Mitsui, T. & Matsuoka, K. A mobile secretory vesicle cluster involved in mass transport from the Golgi to the plant cell exterior. The Plant Cell 21, 1212–1229 (2009).

The corresponding author for this highlight is based at the RIKEN Gene Discovery Research Group

Saeko Okada | Research asia research news
Further information:
http://www.rikenresearch.riken.jp/research/730/
http://www.researchsea.com

More articles from Life Sciences:

nachricht Transport of molecular motors into cilia
28.03.2017 | Aarhus University

nachricht Asian dust providing key nutrients for California's giant sequoias
28.03.2017 | University of California - Riverside

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: A Challenging European Research Project to Develop New Tiny Microscopes

The Institute of Semiconductor Technology and the Institute of Physical and Theoretical Chemistry, both members of the Laboratory for Emerging Nanometrology (LENA), at Technische Universität Braunschweig are partners in a new European research project entitled ChipScope, which aims to develop a completely new and extremely small optical microscope capable of observing the interior of living cells in real time. A consortium of 7 partners from 5 countries will tackle this issue with very ambitious objectives during a four-year research program.

To demonstrate the usefulness of this new scientific tool, at the end of the project the developed chip-sized microscope will be used to observe in real-time...

Im Focus: Giant Magnetic Fields in the Universe

Astronomers from Bonn and Tautenburg in Thuringia (Germany) used the 100-m radio telescope at Effelsberg to observe several galaxy clusters. At the edges of these large accumulations of dark matter, stellar systems (galaxies), hot gas, and charged particles, they found magnetic fields that are exceptionally ordered over distances of many million light years. This makes them the most extended magnetic fields in the universe known so far.

The results will be published on March 22 in the journal „Astronomy & Astrophysics“.

Galaxy clusters are the largest gravitationally bound structures in the universe. With a typical extent of about 10 million light years, i.e. 100 times the...

Im Focus: Tracing down linear ubiquitination

Researchers at the Goethe University Frankfurt, together with partners from the University of Tübingen in Germany and Queen Mary University as well as Francis Crick Institute from London (UK) have developed a novel technology to decipher the secret ubiquitin code.

Ubiquitin is a small protein that can be linked to other cellular proteins, thereby controlling and modulating their functions. The attachment occurs in many...

Im Focus: Perovskite edges can be tuned for optoelectronic performance

Layered 2D material improves efficiency for solar cells and LEDs

In the eternal search for next generation high-efficiency solar cells and LEDs, scientists at Los Alamos National Laboratory and their partners are creating...

Im Focus: Polymer-coated silicon nanosheets as alternative to graphene: A perfect team for nanoelectronics

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are less stable. Now researchers at the Technical University of Munich (TUM) have, for the first time ever, produced a composite material combining silicon nanosheets and a polymer that is both UV-resistant and easy to process. This brings the scientists a significant step closer to industrial applications like flexible displays and photosensors.

Silicon nanosheets are thin, two-dimensional layers with exceptional optoelectronic properties very similar to those of graphene. Albeit, the nanosheets are...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

International Land Use Symposium ILUS 2017: Call for Abstracts and Registration open

20.03.2017 | Event News

CONNECT 2017: International congress on connective tissue

14.03.2017 | Event News

ICTM Conference: Turbine Construction between Big Data and Additive Manufacturing

07.03.2017 | Event News

 
Latest News

Researchers shoot for success with simulations of laser pulse-material interactions

29.03.2017 | Materials Sciences

Igniting a solar flare in the corona with lower-atmosphere kindling

29.03.2017 | Physics and Astronomy

As sea level rises, much of Honolulu and Waikiki vulnerable to groundwater inundation

29.03.2017 | Earth Sciences

VideoLinks
B2B-VideoLinks
More VideoLinks >>>