Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New System Tests Water Quality in Orbit

15.09.2009
Space is not a fun place to get a stomach bug. To ensure drinking water is adequately disinfected, University of Utah chemists developed a two-minute water quality monitoring method that just started six months of tests aboard the International Space Station.

“Now they bring water back on the space shuttle and analyze it on the ground. The problem is there is a big delay. You’d like to be able to maintain iodine or silver [disinfectant] levels in real time with an onboard monitor,” says Marc Porter, a University of Utah professor of chemistry and chemical engineering.

The new method involves sampling space station or space shuttle galley water with syringes, forcing the water through a chemical-imbued disk-shaped membrane, and then reading the color of the membrane with a commercially available, handheld color sensor normally used to measure the color and glossiness of automobile paint.

The sensor detects if the drinking water contains enough iodine (used on U.S. spacecraft) or silver (used by the Russians) to kill any microbes. The International Space Station has both kinds of water purification systems.

“Our focus was to develop a small, simple, low-cost testing system that uses a handheld device, doesn’t consume materials or generate waste, takes minimal astronaut time, is safe and works in microgravity,” says Porter.

As a spinoff, the test is being modified so it can quickly check water for the level of arsenic – a natural pollutant in places like Bangladesh and the U.S. Southwest and Northeast – and it can be adapted to quickly, inexpensively test for other pollutants.

“It is a general method,” says Lorraine Siperko, a senior research scientist in Porter’s laboratory. “It could be used on the ground for testing all kinds of water contaminants such as arsenic, chromium, cadmium, nickel and other heavy metals.”

The method is easy to use and much cheaper than existing tests, says Porter.

From the ‘Vomit Comet’ to the Shuttle to the International Space Station

The water-monitoring system fits in a pack the size of a small ice chest. It was launched Aug. 28 on space shuttle Discovery bound for the International Space Station.

The project is funded by the National Aeronautics and Space Administration, the Utah Science, Technology and Research (USTAR) economic development initiative and two universities where Porter worked previously: Arizona State and Iowa State. The project team now includes NASA, USTAR and the University of Utah, Iowa State University and Wyle Laboratories. Porter is a professor hired under the USTAR program.

During the past decade, the water quality monitoring method was developed and tested during about two dozen low-gravity flights on NASA’s “vomit comet” research aircraft such as the KC-135 and C-9, which took off from Ellington Air Force Base in Texas. During a flight, each plane makes 40 parabola-shaped arcs through the sky, climbing steeply, then leveling and diving. Weightless conditions exist for about 30 seconds at the top of each arc.

Porter rode the KC-135 twice in 2002 and 2004, and became very motion sick. Siperko rode the C-9 five times in 2006 and 2007, developing and testing the water-quality monitoring technique, including how to remove drinking water samples from collection bags without excessive bubbles, which don’t easily separate from water in weightless conditions. The handheld sensor and chemicals used in the testing process also were checked for reliability during the low-gravity plane flights.

Now, “the experiment is in space for the first time,” Siperko says. “It’s very rewarding and exciting to know that something you worked on is so important that NASA put it on the shuttle for a six-month test on the International Space Station.”

Porter called the space station “the coolest place to do experiments.”

On the space station, “once per month they will check the water for iodine and silver,” Siperko says. “That data will be downloaded and relayed back to Earth, to Johnson Space Center” in Texas.

“We have teleconferences with them, and they will transfer the data to us electronically for us to look at,” she adds. “That way we can judge if the experiment is working correctly. If any unforeseen problems arise, then we can advise them as to what we think might be the problem and how to correct it.”

Keeping It Clean in Orbit

The project began a decade ago, before Porter joined the Utah faculty, when NASA sought proposals for disinfectant or “biocide” monitors to check the safety of drinking water on manned spacecraft.

“You can’t sterilize water well enough to keep things from growing in it,” Porter says. “Nature happens.”

NASA uses iodine as a disinfectant on U.S. spacecraft. The Russians use colloidal silver – pure silver nanoparticles, some of which go into solution.

The problem for both iodine and silver is that microbes grow in the water if levels are too low. If levels are too high, iodine-treated water tastes bad and eventually might cause thyroid problems, and silver at excessive levels can turn the skin grayish blue.

Space station water now is sampled and returned to Earth for testing at intervals of months because “they don’t have an acceptable onboard technique,” Porter says.

He says the space station is a proving ground for technologies for longer manned flights to the moon and Mars – even though those flights are unlikely anytime soon due to high costs and other priorities.

Water for astronauts is carried into orbit and also produced on the space station as a byproduct of hydrogen and oxygen reacting in fuel cells. Disinfectants or biocides are added during flight, but actual levels in drinking water cannot be tested until samples are brought back to Earth. Porter says required biocide levels in drinking water are 0.1 to 1 part per million silver and 0.1 to 5 parts per million iodine.

How It Works

To test whether drinking water is adequately disinfected, space station astronauts will collect galley water in sealed plastic bags, and then use syringes to remove some water from the bags and push it through a cartridge that contains a half-inch-diameter, polymer, porous-membrane disk impregnated with a chemical to detect either iodine or silver. The disks, known as “solid phase extraction membranes,” capture either iodine or silver, depending on the chemical in the disk.

Next, the bottom half of the cartridge, which contains the disk, is placed against a German company’s handheld “diffuse reflectance spectrometer,” which shines light on the disk so it can read the disk’s color in about two seconds. Porter says the device was developed to measure the reflectivity or gloss, and thus the quality, of finishes such as automotive paint, industrial surfaces, stainless steel and decorative metals.

Each handheld device – two are in the kit taken to the space station – weighs 1.1 pounds, runs on four AA batteries, has a readout screen and measures 7 inches by 3.7 inches by 3.2 inches.

To test for iodine, the disk is impregnated with PVP (polyvinylpyrrolidone), a nontoxic chemical in contact lens cleaning solutions. The PVP reacts with iodine, and the intensity of the resulting yellow color reveals the concentration of iodine in the water.

To test for silver in water, the disk is imbued with DMABR, which is short for 5-(dimethylaminobenzylidene)rhodanine. A yellowish color indicates silver is absent, while flesh to brighter pink reveals how much silver is present.

“We can do this whole analysis in about two minutes on the ground or in space,” Porter says.

Contacts:
-- Marc Porter, USTAR professor of chemistry and chemical engineering – office (801) 587-1505, cellular (801) 831-4282, marc.porter@utah.edu
-- Lorraine Siperko, senior research scientist – office (801) 587-1522, cellular (801) 865-1189, lorraine.siperko@utah.edu

-- Lee Siegel, science news specialist, University of Utah Public Relations – office (801) 581-8993, cellular (801) 244-5399, leesiegel@ucomm.utah.edu

Lee Siegel | Newswise Science News
Further information:
http://www.utah.edu

More articles from Life Sciences:

nachricht First-of-its-kind chemical oscillator offers new level of molecular control
15.12.2017 | University of Texas at Austin

nachricht New technique could make captured carbon more valuable
15.12.2017 | DOE/Idaho National Laboratory

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: First-of-its-kind chemical oscillator offers new level of molecular control

DNA molecules that follow specific instructions could offer more precise molecular control of synthetic chemical systems, a discovery that opens the door for engineers to create molecular machines with new and complex behaviors.

Researchers have created chemical amplifiers and a chemical oscillator using a systematic method that has the potential to embed sophisticated circuit...

Im Focus: Long-lived storage of a photonic qubit for worldwide teleportation

MPQ scientists achieve long storage times for photonic quantum bits which break the lower bound for direct teleportation in a global quantum network.

Concerning the development of quantum memories for the realization of global quantum networks, scientists of the Quantum Dynamics Division led by Professor...

Im Focus: Electromagnetic water cloak eliminates drag and wake

Detailed calculations show water cloaks are feasible with today's technology

Researchers have developed a water cloaking concept based on electromagnetic forces that could eliminate an object's wake, greatly reducing its drag while...

Im Focus: Scientists channel graphene to understand filtration and ion transport into cells

Tiny pores at a cell's entryway act as miniature bouncers, letting in some electrically charged atoms--ions--but blocking others. Operating as exquisitely sensitive filters, these "ion channels" play a critical role in biological functions such as muscle contraction and the firing of brain cells.

To rapidly transport the right ions through the cell membrane, the tiny channels rely on a complex interplay between the ions and surrounding molecules,...

Im Focus: Towards data storage at the single molecule level

The miniaturization of the current technology of storage media is hindered by fundamental limits of quantum mechanics. A new approach consists in using so-called spin-crossover molecules as the smallest possible storage unit. Similar to normal hard drives, these special molecules can save information via their magnetic state. A research team from Kiel University has now managed to successfully place a new class of spin-crossover molecules onto a surface and to improve the molecule’s storage capacity. The storage density of conventional hard drives could therefore theoretically be increased by more than one hundred fold. The study has been published in the scientific journal Nano Letters.

Over the past few years, the building blocks of storage media have gotten ever smaller. But further miniaturization of the current technology is hindered by...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

See, understand and experience the work of the future

11.12.2017 | Event News

Innovative strategies to tackle parasitic worms

08.12.2017 | Event News

AKL’18: The opportunities and challenges of digitalization in the laser industry

07.12.2017 | Event News

 
Latest News

New technique could make captured carbon more valuable

15.12.2017 | Life Sciences

First-of-its-kind chemical oscillator offers new level of molecular control

15.12.2017 | Life Sciences

A chip for environmental and health monitoring

15.12.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>