Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Better synchronization helps fish deal with predator threat

26.05.2010
Fish alter their movements when under threat from predators to keep closer together and to help them to blend into the crowd, according to new research headed by scientists at the University of York.

Researchers in the York Centre for Complex Systems Analysis (YCCSA), based in the University's Department of Biology, used a combined computer simulation and experimental study of group behaviour to discover that shoaling fish co-ordinate their movements more frequently when under threat.

They 'update' their behaviour more often because by moving in a more coherent fashion with shoal members, individual fish are able to reduce the risk of being targeted by predators as the 'odd one out'.

The model predicts that higher updating frequency, caused by threat, leads to more synchronized group movement with both speed and nearest neighbour distributions becoming more uniform.

The research is published today in the latest issue of Proceedings of the Royal Society B. The study is supported by the Natural Environment Research Council.

The scientists suggest that the so-called 'oddity effect' could be the driving force for the behavioural changes. The computer model measures speed and distance distributions and provides a method of assessing stress levels of collectively grouping animals in a remotely collectable and non-obtrusive way.

Dr Jamie Wood, of YCCSA, said: "We find that as grouping animals feel more threatened, they monitor their fellows more frequently which results in better synchronization.

"Closely coordinated movement has the advantage that predators find it more difficult to single out a single target for their prey. Our work may help to explain how tightly bound fish shoals emerge and determine how agitated animals moving in groups are at any given moment."

The research also involved scientists at the Institute of Integrative and Comparative Biology at the University of Leeds and the Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin.

David Garner | EurekAlert!
Further information:
http://www.york.ac.uk

Further reports about: Ecology YCCSA computer simulation shoaling fish synthetic biology

More articles from Life Sciences:

nachricht Scientists unlock ability to generate new sensory hair cells
22.02.2017 | Brigham and Women's Hospital

nachricht New insights into the information processing of motor neurons
22.02.2017 | Max Planck Florida Institute for Neuroscience

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Microhotplates for a smart gas sensor

22.02.2017 | Power and Electrical Engineering

Scientists unlock ability to generate new sensory hair cells

22.02.2017 | Life Sciences

Prediction: More gas-giants will be found orbiting Sun-like stars

22.02.2017 | Physics and Astronomy

VideoLinks
B2B-VideoLinks
More VideoLinks >>>