Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:


Better synchronization helps fish deal with predator threat

Fish alter their movements when under threat from predators to keep closer together and to help them to blend into the crowd, according to new research headed by scientists at the University of York.

Researchers in the York Centre for Complex Systems Analysis (YCCSA), based in the University's Department of Biology, used a combined computer simulation and experimental study of group behaviour to discover that shoaling fish co-ordinate their movements more frequently when under threat.

They 'update' their behaviour more often because by moving in a more coherent fashion with shoal members, individual fish are able to reduce the risk of being targeted by predators as the 'odd one out'.

The model predicts that higher updating frequency, caused by threat, leads to more synchronized group movement with both speed and nearest neighbour distributions becoming more uniform.

The research is published today in the latest issue of Proceedings of the Royal Society B. The study is supported by the Natural Environment Research Council.

The scientists suggest that the so-called 'oddity effect' could be the driving force for the behavioural changes. The computer model measures speed and distance distributions and provides a method of assessing stress levels of collectively grouping animals in a remotely collectable and non-obtrusive way.

Dr Jamie Wood, of YCCSA, said: "We find that as grouping animals feel more threatened, they monitor their fellows more frequently which results in better synchronization.

"Closely coordinated movement has the advantage that predators find it more difficult to single out a single target for their prey. Our work may help to explain how tightly bound fish shoals emerge and determine how agitated animals moving in groups are at any given moment."

The research also involved scientists at the Institute of Integrative and Comparative Biology at the University of Leeds and the Department of Biology and Ecology of Fishes, Leibniz-Institute of Freshwater Ecology and Inland Fisheries, Berlin.

David Garner | EurekAlert!
Further information:

Further reports about: Ecology YCCSA computer simulation shoaling fish synthetic biology

More articles from Life Sciences:

nachricht First time-lapse footage of cell activity during limb regeneration
25.10.2016 | eLife

nachricht Phenotype at the push of a button
25.10.2016 | Institut für Pflanzenbiochemie

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Etching Microstructures with Lasers

Ultrafast lasers have introduced new possibilities in engraving ultrafine structures, and scientists are now also investigating how to use them to etch microstructures into thin glass. There are possible applications in analytics (lab on a chip) and especially in electronics and the consumer sector, where great interest has been shown.

This new method was born of a surprising phenomenon: irradiating glass in a particular way with an ultrafast laser has the effect of making the glass up to a...

Im Focus: Light-driven atomic rotations excite magnetic waves

Terahertz excitation of selected crystal vibrations leads to an effective magnetic field that drives coherent spin motion

Controlling functional properties by light is one of the grand goals in modern condensed matter physics and materials science. A new study now demonstrates how...

Im Focus: New 3-D wiring technique brings scalable quantum computers closer to reality

Researchers from the Institute for Quantum Computing (IQC) at the University of Waterloo led the development of a new extensible wiring technique capable of controlling superconducting quantum bits, representing a significant step towards to the realization of a scalable quantum computer.

"The quantum socket is a wiring method that uses three-dimensional wires based on spring-loaded pins to address individual qubits," said Jeremy Béjanin, a PhD...

Im Focus: Scientists develop a semiconductor nanocomposite material that moves in response to light

In a paper in Scientific Reports, a research team at Worcester Polytechnic Institute describes a novel light-activated phenomenon that could become the basis for applications as diverse as microscopic robotic grippers and more efficient solar cells.

A research team at Worcester Polytechnic Institute (WPI) has developed a revolutionary, light-activated semiconductor nanocomposite material that can be used...

Im Focus: Diamonds aren't forever: Sandia, Harvard team create first quantum computer bridge

By forcefully embedding two silicon atoms in a diamond matrix, Sandia researchers have demonstrated for the first time on a single chip all the components needed to create a quantum bridge to link quantum computers together.

"People have already built small quantum computers," says Sandia researcher Ryan Camacho. "Maybe the first useful one won't be a single giant quantum computer...

All Focus news of the innovation-report >>>



Event News

#IC2S2: When Social Science meets Computer Science - GESIS will host the IC2S2 conference 2017

14.10.2016 | Event News

Agricultural Trade Developments and Potentials in Central Asia and the South Caucasus

14.10.2016 | Event News

World Health Summit – Day Three: A Call to Action

12.10.2016 | Event News

Latest News

Ice shelf vibrations cause unusual waves in Antarctic atmosphere

25.10.2016 | Earth Sciences

Fluorescent holography: Upending the world of biological imaging

25.10.2016 | Power and Electrical Engineering

Etching Microstructures with Lasers

25.10.2016 | Process Engineering

More VideoLinks >>>