Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Symbiosis or capitalism? A new view of forest fungi

22.05.2014

A new study suggests that symbiotic relationships between trees and the mycorrhyzae that grow in their roots may not be as mutually beneficial as previously thought.

The so-called symbiotic relationship between trees and the fungus that grow on their roots may actually work more like a capitalist market relationship between buyers and sellers, according to the new study published in the journal New Phytologist.

Recent experiments in the forests of Sweden had brought into a question a long-held theory of biology: that the fungi or mycorrhizae that grow on tree roots work with trees in a symbiotic relationship that is beneficial for both the fungi and the trees, providing needed nutrients to both parties. These fungi, including many edible mushrooms, are particularly common in boreal forests with scarce nutrients. But in contrast to the current paradigm, the new research shows that they may be the cause rather than the cure for the nutrient scarcity.

In the recent experiments, researchers found that rather than alleviating nutrient limitations in soil, the root fungi maintain that limitation, by transferring less nitrogen to the trees when nutrients are scarce than when they are abundant in the soil.

The new study, led by IIASA Ecosystems Services and Management researcher Oskar Franklin in collaboration with the Swedish University of Agricultural Sciences, used a theoretical model to explain the new experimental findings, by simulating the interaction between individual fungus and plant. It suggests that since each organism competes with others in trading nutrients such as carbon and nitrogen, the system as a whole may function more like a capitalistic market economy than a cooperative symbiotic relationship. The competition among trees makes them export excessive amounts of carbon to the fungi, which seize a lot of soil nutrients.

“The new theory pictures a more business-like relationship among multiple buyers and sellers connected in a network. Having multiple symbiotic trading-partners generates competition among both the fungi and the plants, where each individual trades carbon for nutrients or vice versa to maximize profits, not unlike a capitalistic market economy,” says Franklin.

“Although doing business with fungi is a good deal from each tree’s own point of view it traps the whole forest in nutrient limitation,” he says.

Understanding boreal forest nutrient cycles is incredibly important for modeling climate change, because it influences how much carbon dioxide these regions can absorb, as well as how they are influenced by the increasing concentrations of greenhouse gases in the atmosphere. Franklin says, “This syndrome is aggravated by rising CO2. As more carbon becomes available to the trees, the limitation of nitrogen generated by mycorrhizae becomes even more important, possibly eliminating or even reversing the expected CO2 fertilization effect in boreal forest.”

References
Franklin O, Näsholm T, Högberg P, Högberg MN. 2014. Forests trapped in nitrogen limitation: an ecological market perspective on ectomycorrhizal symbiosis. New Phytologist. DOI: 10.1111/nph.12840
Näsholm T, Högberg P, Franklin O, Metcalfe D, Keel SG, Campbell C, Hurry V, Linder S, Högberg MN. 2013. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytologist 198(1): 214-221.

For more information please contact:

Oskar Franklin
Research Scholar
Ecosystems Services and Management
Tel: +43(0) 2236 807 251
franklin@iiasa.ac.at

Katherine Leitzell
IIASA Press Office
Tel: +43 2236 807 316
Mob: +43 676 83 807 316
leitzell@iiasa.ac.at

About IIASA:
IIASA is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policy makers to shape the future of our changing world. IIASA is independent and funded by scientific institutions in Africa, the Americas, Asia, Oceania, and Europe. www.iiasa.ac.at

Weitere Informationen:

http://www.iiasa.ac.at/web/home/about/news/20140521-fungi.html
http://onlinelibrary.wiley.com/doi/10.1111/nph.12840/abstract
http://www.seksko.se/en/research/competence-areas/53-ecophysiology.html
http://www.iiasa.ac.at/web/home/about/news/20131218-ERC-Synergy.en.html

Katherine Leitzell | idw - Informationsdienst Wissenschaft

Further reports about: Analysis IIASA capitalism experiments forests fungi fungus nitrogen nutrient nutrients symbiotic

More articles from Life Sciences:

nachricht One step closer to reality
20.04.2018 | Max-Planck-Institut für Entwicklungsbiologie

nachricht The dark side of cichlid fish: from cannibal to caregiver
20.04.2018 | Veterinärmedizinische Universität Wien

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Spider silk key to new bone-fixing composite

University of Connecticut researchers have created a biodegradable composite made of silk fibers that can be used to repair broken load-bearing bones without the complications sometimes presented by other materials.

Repairing major load-bearing bones such as those in the leg can be a long and uncomfortable process.

Im Focus: Writing and deleting magnets with lasers

Study published in the journal ACS Applied Materials & Interfaces is the outcome of an international effort that included teams from Dresden and Berlin in Germany, and the US.

Scientists at the Helmholtz-Zentrum Dresden-Rossendorf (HZDR) together with colleagues from the Helmholtz-Zentrum Berlin (HZB) and the University of Virginia...

Im Focus: Gamma-ray flashes from plasma filaments

Novel highly efficient and brilliant gamma-ray source: Based on model calculations, physicists of the Max PIanck Institute for Nuclear Physics in Heidelberg propose a novel method for an efficient high-brilliance gamma-ray source. A giant collimated gamma-ray pulse is generated from the interaction of a dense ultra-relativistic electron beam with a thin solid conductor. Energetic gamma-rays are copiously produced as the electron beam splits into filaments while propagating across the conductor. The resulting gamma-ray energy and flux enable novel experiments in nuclear and fundamental physics.

The typical wavelength of light interacting with an object of the microcosm scales with the size of this object. For atoms, this ranges from visible light to...

Im Focus: Basel researchers succeed in cultivating cartilage from stem cells

Stable joint cartilage can be produced from adult stem cells originating from bone marrow. This is made possible by inducing specific molecular processes occurring during embryonic cartilage formation, as researchers from the University and University Hospital of Basel report in the scientific journal PNAS.

Certain mesenchymal stem/stromal cells from the bone marrow of adults are considered extremely promising for skeletal tissue regeneration. These adult stem...

Im Focus: Like a wedge in a hinge

Researchers lay groundwork to tailor drugs for new targets in cancer therapy

In the fight against cancer, scientists are developing new drugs to hit tumor cells at so far unused weak points. Such a “sore spot” is the protein complex...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

VideoLinks
Industry & Economy
Event News

Invitation to the upcoming "Current Topics in Bioinformatics: Big Data in Genomics and Medicine"

13.04.2018 | Event News

Unique scope of UV LED technologies and applications presented in Berlin: ICULTA-2018

12.04.2018 | Event News

IWOLIA: A conference bringing together German Industrie 4.0 and French Industrie du Futur

09.04.2018 | Event News

 
Latest News

Magnetic nano-imaging on a table top

20.04.2018 | Physics and Astronomy

Start of work for the world's largest electric truck

20.04.2018 | Interdisciplinary Research

Atoms may hum a tune from grand cosmic symphony

20.04.2018 | Physics and Astronomy

VideoLinks
Science & Research
Overview of more VideoLinks >>>