Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

Symbiosis or capitalism? A new view of forest fungi

22.05.2014

A new study suggests that symbiotic relationships between trees and the mycorrhyzae that grow in their roots may not be as mutually beneficial as previously thought.

The so-called symbiotic relationship between trees and the fungus that grow on their roots may actually work more like a capitalist market relationship between buyers and sellers, according to the new study published in the journal New Phytologist.

Recent experiments in the forests of Sweden had brought into a question a long-held theory of biology: that the fungi or mycorrhizae that grow on tree roots work with trees in a symbiotic relationship that is beneficial for both the fungi and the trees, providing needed nutrients to both parties. These fungi, including many edible mushrooms, are particularly common in boreal forests with scarce nutrients. But in contrast to the current paradigm, the new research shows that they may be the cause rather than the cure for the nutrient scarcity.

In the recent experiments, researchers found that rather than alleviating nutrient limitations in soil, the root fungi maintain that limitation, by transferring less nitrogen to the trees when nutrients are scarce than when they are abundant in the soil.

The new study, led by IIASA Ecosystems Services and Management researcher Oskar Franklin in collaboration with the Swedish University of Agricultural Sciences, used a theoretical model to explain the new experimental findings, by simulating the interaction between individual fungus and plant. It suggests that since each organism competes with others in trading nutrients such as carbon and nitrogen, the system as a whole may function more like a capitalistic market economy than a cooperative symbiotic relationship. The competition among trees makes them export excessive amounts of carbon to the fungi, which seize a lot of soil nutrients.

“The new theory pictures a more business-like relationship among multiple buyers and sellers connected in a network. Having multiple symbiotic trading-partners generates competition among both the fungi and the plants, where each individual trades carbon for nutrients or vice versa to maximize profits, not unlike a capitalistic market economy,” says Franklin.

“Although doing business with fungi is a good deal from each tree’s own point of view it traps the whole forest in nutrient limitation,” he says.

Understanding boreal forest nutrient cycles is incredibly important for modeling climate change, because it influences how much carbon dioxide these regions can absorb, as well as how they are influenced by the increasing concentrations of greenhouse gases in the atmosphere. Franklin says, “This syndrome is aggravated by rising CO2. As more carbon becomes available to the trees, the limitation of nitrogen generated by mycorrhizae becomes even more important, possibly eliminating or even reversing the expected CO2 fertilization effect in boreal forest.”

References
Franklin O, Näsholm T, Högberg P, Högberg MN. 2014. Forests trapped in nitrogen limitation: an ecological market perspective on ectomycorrhizal symbiosis. New Phytologist. DOI: 10.1111/nph.12840
Näsholm T, Högberg P, Franklin O, Metcalfe D, Keel SG, Campbell C, Hurry V, Linder S, Högberg MN. 2013. Are ectomycorrhizal fungi alleviating or aggravating nitrogen limitation of tree growth in boreal forests? New Phytologist 198(1): 214-221.

For more information please contact:

Oskar Franklin
Research Scholar
Ecosystems Services and Management
Tel: +43(0) 2236 807 251
franklin@iiasa.ac.at

Katherine Leitzell
IIASA Press Office
Tel: +43 2236 807 316
Mob: +43 676 83 807 316
leitzell@iiasa.ac.at

About IIASA:
IIASA is an international scientific institute that conducts research into the critical issues of global environmental, economic, technological, and social change that we face in the twenty-first century. Our findings provide valuable options to policy makers to shape the future of our changing world. IIASA is independent and funded by scientific institutions in Africa, the Americas, Asia, Oceania, and Europe. www.iiasa.ac.at

Weitere Informationen:

http://www.iiasa.ac.at/web/home/about/news/20140521-fungi.html
http://onlinelibrary.wiley.com/doi/10.1111/nph.12840/abstract
http://www.seksko.se/en/research/competence-areas/53-ecophysiology.html
http://www.iiasa.ac.at/web/home/about/news/20131218-ERC-Synergy.en.html

Katherine Leitzell | idw - Informationsdienst Wissenschaft

Further reports about: Analysis IIASA capitalism experiments forests fungi fungus nitrogen nutrient nutrients symbiotic

More articles from Life Sciences:

nachricht Crystal clear images uncover secrets of hormone receptors
03.08.2015 | NIH/National Institute of Neurological Disorders and Stroke

nachricht How to become a T follicular helper cell
31.07.2015 | La Jolla Institute for Allergy and Immunology

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Glaciers melt faster than ever

Glacier decline in the first decade of the 21st century has reached a historical record, since the onset of direct observations. Glacier melt is a global phenomenon and will continue even without further climate change. This is shown in the latest study by the World Glacier Monitoring Service under the lead of the University of Zurich, Switzerland.

The World Glacier Monitoring Service, domiciled at the University of Zurich, has compiled worldwide data on glacier changes for more than 120 years. Together...

Im Focus: Quantum Matter Stuck in Unrest

Using ultracold atoms trapped in light crystals, scientists from the MPQ, LMU, and the Weizmann Institute observe a novel state of matter that never thermalizes.

What happens if one mixes cold and hot water? After some initial dynamics, one is left with lukewarm water—the system has thermalized to a new thermal...

Im Focus: On the crest of the wave: Electronics on a time scale shorter than a cycle of light

Physicists from Regensburg and Marburg, Germany have succeeded in taking a slow-motion movie of speeding electrons in a solid driven by a strong light wave. In the process, they have unraveled a novel quantum phenomenon, which will be reported in the forthcoming edition of Nature.

The advent of ever faster electronics featuring clock rates up to the multiple-gigahertz range has revolutionized our day-to-day life. Researchers and...

Im Focus: Superfast fluorescence sets new speed record

Plasmonic device has speed and efficiency to serve optical computers

Researchers have developed an ultrafast light-emitting device that can flip on and off 90 billion times a second and could form the basis of optical computing.

Im Focus: Unlocking the rice immune system

Joint BioEnergy Institute study identifies bacterial protein that is key to protecting rice against bacterial blight

A bacterial signal that when recognized by rice plants enables the plants to resist a devastating blight disease has been identified by a multi-national team...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

3rd Euro Bio-inspired - International Conference and Exhibition on Bio-inspired Materials

23.07.2015 | Event News

Clash of Realities – International Conference on the Art, Technology and Theory of Digital Games

10.07.2015 | Event News

World Conference on Regenerative Medicine in Leipzig: Last chance to submit abstracts until 2 July

25.06.2015 | Event News

 
Latest News

Glaciers melt faster than ever

03.08.2015 | Earth Sciences

Tool making and additive technology exhibition: Fraunhofer IPT at Formnext

31.07.2015 | Trade Fair News

First Siemens-built Thameslink train arrives in London

31.07.2015 | Transportation and Logistics

VideoLinks
B2B-VideoLinks
More VideoLinks >>>