Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

New On-Off “Switch” Triggers and Reverses Paralysis in Animals with a Beam of Light

23.11.2009
In an advance with overtones of Star Trek phasers and other sci-fi ray guns, scientists in Canada are reporting development of an internal on-off “switch” that paralyzes animals when exposed to a beam of ultraviolet light. The animals stay paralyzed even when the light is turned off.

When exposed to ordinary light, the animals become unparalyzed and wake up. Their study appears in the Journal of the American Chemical Society (JACS). It reports the first demonstration of such a light-activated switch in animals.

Neil Branda and colleagues point out that such “photoswitches” -- light-sensitive materials that undergo photoreactions -- have been available for years. Scientists use them in research. Doctors use light-sensitive materials and photoreactions in medicine in photodynamic therapy to treat certain forms of cancer. Those light-sensitive materials, however, do not have the reversibility that exists in photoswitching.

The JACS report describes development and successful testing of a photoswitch composed of the light-sensitive material, dithienylethene. The scientists grew transparent, pinhead-sized worms (C. elegans) and fed them a dithienylethene. When exposed to ultraviolet light, the worms turned blue and became paralyzed. When exposed to visible light, the dithienylethene became colorless again and the worms’ paralysis ended. Many of the worms lived through the paralyze-unparalyze cycle. Scientists were not sure how the switch causes paralysis. The study demonstrates that photoswitches may have great potential in turning photodynamic therapy on and off, and for other applications in medicine and research, they indicate.

ARTICLE FOR IMMEDIATE RELEASE
“A Photocontrolled Molecular Switch Regulates Paralysis in a Living Organism”
DOWNLOAD FULL TEXT ARTICLE
http://pubs.acs.org/stoken/presspac/presspac/full/10.1021/ja903070u
FOR VIDEO, CLICK HERE: http://pubs.acs.org/doi/suppl/10.1021/ja903070u/suppl_file/ja903070u_si_002.avi (18.9 MB)
CONTACT:
Neil Branda, Ph.D.
Department of Chemistry
Department of Molecular Biology and Biochemistry
Simon Fraser University
Burnaby, British Columbia
Canada
Phone: 778-782-8061
Fax: 778-782-3765
Email: nbranda@sfu.ca
Science Inquiries: Michael Woods, editor
m_woods@acs.org
202-872-6293
General Inquiries: Michael Bernstein
m_bernstein@acs.org
202-872-6042

Neil Branda | Newswise Science News
Further information:
http://www.acs.org

More articles from Life Sciences:

nachricht New risk factors for anxiety disorders
24.02.2017 | Julius-Maximilians-Universität Würzburg

nachricht Stingless bees have their nests protected by soldiers
24.02.2017 | Johannes Gutenberg-Universität Mainz

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Breakthrough with a chain of gold atoms

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

In the field of nanoscience, an international team of physicists with participants from Konstanz has achieved a breakthrough in understanding heat transport

Im Focus: DNA repair: a new letter in the cell alphabet

Results reveal how discoveries may be hidden in scientific “blind spots”

Cells need to repair damaged DNA in our genes to prevent the development of cancer and other diseases. Our cells therefore activate and send “repair-proteins”...

Im Focus: Dresdner scientists print tomorrow’s world

The Fraunhofer IWS Dresden and Technische Universität Dresden inaugurated their jointly operated Center for Additive Manufacturing Dresden (AMCD) with a festive ceremony on February 7, 2017. Scientists from various disciplines perform research on materials, additive manufacturing processes and innovative technologies, which build up components in a layer by layer process. This technology opens up new horizons for component design and combinations of functions. For example during fabrication, electrical conductors and sensors are already able to be additively manufactured into components. They provide information about stress conditions of a product during operation.

The 3D-printing technology, or additive manufacturing as it is often called, has long made the step out of scientific research laboratories into industrial...

Im Focus: Mimicking nature's cellular architectures via 3-D printing

Research offers new level of control over the structure of 3-D printed materials

Nature does amazing things with limited design materials. Grass, for example, can support its own weight, resist strong wind loads, and recover after being...

Im Focus: Three Magnetic States for Each Hole

Nanometer-scale magnetic perforated grids could create new possibilities for computing. Together with international colleagues, scientists from the Helmholtz Zentrum Dresden-Rossendorf (HZDR) have shown how a cobalt grid can be reliably programmed at room temperature. In addition they discovered that for every hole ("antidot") three magnetic states can be configured. The results have been published in the journal "Scientific Reports".

Physicist Dr. Rantej Bali from the HZDR, together with scientists from Singapore and Australia, designed a special grid structure in a thin layer of cobalt in...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

Booth and panel discussion – The Lindau Nobel Laureate Meetings at the AAAS 2017 Annual Meeting

13.02.2017 | Event News

Complex Loading versus Hidden Reserves

10.02.2017 | Event News

International Conference on Crystal Growth in Freiburg

09.02.2017 | Event News

 
Latest News

Stingless bees have their nests protected by soldiers

24.02.2017 | Life Sciences

New risk factors for anxiety disorders

24.02.2017 | Life Sciences

MWC 2017: 5G Capital Berlin

24.02.2017 | Trade Fair News

VideoLinks
B2B-VideoLinks
More VideoLinks >>>