Forum for Science, Industry and Business

Sponsored by:     3M 
Search our Site:

 

To swim or to crawl: For the worm it's a no brainer

02.04.2009
A study at the University of Leeds has shown, for the first time, that C. elegans worms crawl and swim using the same gait, overturning the widely accepted belief that these two behaviours are completely different.

The findings have important implications for biologists and geneticists using C. elegans for their research. Until recently scientists have largely limited their observations of the worm to crawling on solids, but this discovery suggests that it is just as important to consider a range of environments when studying the behaviour of the worm.

Lead researcher Dr Netta Cohen, Reader in the School of Computing, says: "Our discovery suggests that it's important to study the function of the worm's nervous system in a range of environments, where the mode of operation of the nervous system and the specific role of individual genes may be more apparent."

C. elegans, a tiny free-living worm, was the very first animal species to be completely genetically sequenced and operates with many of the same genes that are found in human beings. It is used by scientists as a model system to gain a fundamental understanding of the basic principles of life.

C. elegans is so simple it doesn't have a brain, only a minimal nervous system of 302 nerve cells (as opposed to the 100 billion or so in the human brain). This 1mm long worm exhibits a wide range of behaviour, including foraging, learning, memory and even social behaviour. Scientists are fascinated with this tiny worm, anticipating that this will be the first animal species to be completely understood.

In its natural habitat, C. elegans can encounter a range of environments where its motion can be quite varied - from muddy water and moist surfaces in dry ground to the centre of rotten fruit, where it will find a plentiful supply of food. The worm's swimming and crawling observed in different environments look so distinct, there's a long-held consensus that these are separate gaits – as with horses, where galloping and trotting are entirely different motions.

Using a combination of experimental laboratory work and computer simulations, the research team has shown that swimming, crawling - and everything in between - represents one locomotion gait that is generated and controlled with a single underlying nervous system mechanism.

Dr Cohen says: "We raised the question of how such a minimal nervous system can exhibit different behaviours and instantly switch between them. Our finding is the first unified description of a whole range of behaviours and should hopefully make the modeling of this animal more accessible."

Clare Elsley | EurekAlert!
Further information:
http://www.leeds.ac.uk

More articles from Life Sciences:

nachricht Cnidarians remotely control bacteria
21.09.2017 | Christian-Albrechts-Universität zu Kiel

nachricht Immune cells may heal bleeding brain after strokes
21.09.2017 | NIH/National Institute of Neurological Disorders and Stroke

All articles from Life Sciences >>>

The most recent press releases about innovation >>>

Die letzten 5 Focus-News des innovations-reports im Überblick:

Im Focus: Highly precise wiring in the Cerebral Cortex

Our brains house extremely complex neuronal circuits, whose detailed structures are still largely unknown. This is especially true for the so-called cerebral cortex of mammals, where among other things vision, thoughts or spatial orientation are being computed. Here the rules by which nerve cells are connected to each other are only partly understood. A team of scientists around Moritz Helmstaedter at the Frankfiurt Max Planck Institute for Brain Research and Helene Schmidt (Humboldt University in Berlin) have now discovered a surprisingly precise nerve cell connectivity pattern in the part of the cerebral cortex that is responsible for orienting the individual animal or human in space.

The researchers report online in Nature (Schmidt et al., 2017. Axonal synapse sorting in medial entorhinal cortex, DOI: 10.1038/nature24005) that synapses in...

Im Focus: Tiny lasers from a gallery of whispers

New technique promises tunable laser devices

Whispering gallery mode (WGM) resonators are used to make tiny micro-lasers, sensors, switches, routers and other devices. These tiny structures rely on a...

Im Focus: Ultrafast snapshots of relaxing electrons in solids

Using ultrafast flashes of laser and x-ray radiation, scientists at the Max Planck Institute of Quantum Optics (Garching, Germany) took snapshots of the briefest electron motion inside a solid material to date. The electron motion lasted only 750 billionths of the billionth of a second before it fainted, setting a new record of human capability to capture ultrafast processes inside solids!

When x-rays shine onto solid materials or large molecules, an electron is pushed away from its original place near the nucleus of the atom, leaving a hole...

Im Focus: Quantum Sensors Decipher Magnetic Ordering in a New Semiconducting Material

For the first time, physicists have successfully imaged spiral magnetic ordering in a multiferroic material. These materials are considered highly promising candidates for future data storage media. The researchers were able to prove their findings using unique quantum sensors that were developed at Basel University and that can analyze electromagnetic fields on the nanometer scale. The results – obtained by scientists from the University of Basel’s Department of Physics, the Swiss Nanoscience Institute, the University of Montpellier and several laboratories from University Paris-Saclay – were recently published in the journal Nature.

Multiferroics are materials that simultaneously react to electric and magnetic fields. These two properties are rarely found together, and their combined...

Im Focus: Fast, convenient & standardized: New lab innovation for automated tissue engineering & drug

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems Holding GmbH about commercial use of a multi-well tissue plate for automated and reliable tissue engineering & drug testing.

MBM ScienceBridge GmbH successfully negotiated a license agreement between University Medical Center Göttingen (UMG) and the biotech company Tissue Systems...

All Focus news of the innovation-report >>>

Anzeige

Anzeige

Event News

“Lasers in Composites Symposium” in Aachen – from Science to Application

19.09.2017 | Event News

I-ESA 2018 – Call for Papers

12.09.2017 | Event News

EMBO at Basel Life, a new conference on current and emerging life science research

06.09.2017 | Event News

 
Latest News

Comet or asteroid? Hubble discovers that a unique object is a binary

21.09.2017 | Physics and Astronomy

Cnidarians remotely control bacteria

21.09.2017 | Life Sciences

Monitoring the heart's mitochondria to predict cardiac arrest?

21.09.2017 | Health and Medicine

VideoLinks
B2B-VideoLinks
More VideoLinks >>>